Extended Fujita approach to the molecular weight distribution of polysaccharides and other polymeric systems

dc.authorid0000-0002-0335-2162en_US
dc.authorid0000-0002-5910-2832en_US
dc.authorid0000-0002-8859-6966en_US
dc.authorid0000-0002-7050-4082en_US
dc.authorid0000-0002-7798-9692en_US
dc.contributor.authorHarding, Stephen E.
dc.contributor.authorSchuck, Peter
dc.contributor.authorAbdelhameed, Ali Saber
dc.contributor.authorAdams, Gary
dc.contributor.authorKök, M. Şamil
dc.date.accessioned2021-06-23T19:28:08Z
dc.date.available2021-06-23T19:28:08Z
dc.date.issued2011
dc.departmentBAİBÜ, Mühendislik Fakültesi, Gıda Mühendisliği Bölümüen_US
dc.description.abstractIn 1962 H. Fujita (H. Fujita, Mathematical Theory of Sedimentation Analysis, Academic Press, New York, 1962) examined the possibility of transforming a quasi-continuous distribution g(s) of sedimentation coefficient s into a distribution f(M) of molecular weight M for linear polymers using the relation f(M) = g(s) . (ds/dM) and showed that this could be done if information about the relation between s and M is available from other sources. Fujita provided the transformation based on the scaling relation s = kappa M-s(0.5), where kappa(s) is taken as a constant for that particular polymer and the exponent 0.5 essentially corresponds to a randomly coiled polymer under ideal conditions. This method has been successfully applied to mucus glycoproteins (SE. Harding, Adv. Carbohyd. Chem. Biochem. 47 (1989) 345-381). We now describe an extension of the method to general conformation types via the scaling relation s = kappa M-b, where b = 0.4-0.5 for a coil, similar to 0.15-0.2 for a rod and similar to 0.67 for a sphere. We give examples of distributions f(M) versus M obtained for polysaccharides from SEDFIT derived least squares g(s) versus s profiles (P. Schuck, Biophys. J. 78 (2000) 1606-1619) and the analytical derivative for ds/dM performed with Microcal ORIGIN. We also describe a more direct route from a direct numerical solution of the integral equation describing the molecular weight distribution problem. Both routes give identical distributions although the latter offers the advantage of being incorporated completely within SEDFIT. The method currently assumes that solutions behave ideally: sedimentation velocity has the major advantage over sedimentation equilibrium in that concentrations less than 0.2 mg/ml can be employed, and for many systems non-ideality effects can be reasonably ignored. For large, non-globular polymer systems, diffusive contributions are also likely to be small. (C) 2011 Elsevier Inc. All rights reserved.en_US
dc.identifier.doi10.1016/j.ymeth.2011.01.009
dc.identifier.endpage144en_US
dc.identifier.issn1046-2023
dc.identifier.issn1095-9130
dc.identifier.issue1en_US
dc.identifier.pmid21276851en_US
dc.identifier.scopus2-s2.0-79955614957en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage136en_US
dc.identifier.urihttps://doi.org/10.1016/j.ymeth.2011.01.009
dc.identifier.urihttps://hdl.handle.net/20.500.12491/6958
dc.identifier.volume54en_US
dc.identifier.wosWOS:000290649700014en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakPubMeden_US
dc.institutionauthorKök, M. Şamil
dc.language.isoenen_US
dc.publisherAcademic Press Inc Elsevier Scienceen_US
dc.relation.ispartofMethodsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSedimentation Velocityen_US
dc.subjectPower Lawen_US
dc.subjectPolydispersityen_US
dc.subjectIdeal Systemen_US
dc.subjectSEDFITen_US
dc.titleExtended Fujita approach to the molecular weight distribution of polysaccharides and other polymeric systemsen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
stephen-harding.pdf
Boyut:
593.66 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam metin / Full Text