Extended Fujita approach to the molecular weight distribution of polysaccharides and other polymeric systems

Yükleniyor...
Küçük Resim

Tarih

2011

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Academic Press Inc Elsevier Science

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

In 1962 H. Fujita (H. Fujita, Mathematical Theory of Sedimentation Analysis, Academic Press, New York, 1962) examined the possibility of transforming a quasi-continuous distribution g(s) of sedimentation coefficient s into a distribution f(M) of molecular weight M for linear polymers using the relation f(M) = g(s) . (ds/dM) and showed that this could be done if information about the relation between s and M is available from other sources. Fujita provided the transformation based on the scaling relation s = kappa M-s(0.5), where kappa(s) is taken as a constant for that particular polymer and the exponent 0.5 essentially corresponds to a randomly coiled polymer under ideal conditions. This method has been successfully applied to mucus glycoproteins (SE. Harding, Adv. Carbohyd. Chem. Biochem. 47 (1989) 345-381). We now describe an extension of the method to general conformation types via the scaling relation s = kappa M-b, where b = 0.4-0.5 for a coil, similar to 0.15-0.2 for a rod and similar to 0.67 for a sphere. We give examples of distributions f(M) versus M obtained for polysaccharides from SEDFIT derived least squares g(s) versus s profiles (P. Schuck, Biophys. J. 78 (2000) 1606-1619) and the analytical derivative for ds/dM performed with Microcal ORIGIN. We also describe a more direct route from a direct numerical solution of the integral equation describing the molecular weight distribution problem. Both routes give identical distributions although the latter offers the advantage of being incorporated completely within SEDFIT. The method currently assumes that solutions behave ideally: sedimentation velocity has the major advantage over sedimentation equilibrium in that concentrations less than 0.2 mg/ml can be employed, and for many systems non-ideality effects can be reasonably ignored. For large, non-globular polymer systems, diffusive contributions are also likely to be small. (C) 2011 Elsevier Inc. All rights reserved.

Açıklama

Anahtar Kelimeler

Sedimentation Velocity, Power Law, Polydispersity, Ideal System, SEDFIT

Kaynak

Methods

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

54

Sayı

1

Künye