Pyrolysis dynamics of two medical plastic wastes: Drivers, behaviors, evolved gases, reaction mechanisms, and pathways

Yükleniyor...
Küçük Resim

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

The public has started to increasingly scrutinize the proper disposal and treatment of rapidly growing medical wastes, in particular, given the COVID-19 pandemic, raised awareness, and the advances in the health sector. This research aimed to characterize pyrolysis drivers, behaviors, products, reaction mechanisms, and pathways via TG-FTIR and Py-GC/MS analyses as a function of the two medical plastic wastes of syringes (SY) and medical bottles (MB), conversion degree, degradation stage, and the four heating rates (5,10, 20, and 40 degrees C/min). SY and MB pyrolysis ranged from 394.4 to 501 and from 417.9 to 517 degrees C, respectively. The average activation energy was 246.5 and 268.51 kJ/mol for the SY and MB devolatilization, respectively. MB appeared to exhibit a better pyrolysis performance with a higher degradation rate and less residues. The most suitable reaction mechanisms belonged to a geometrical contraction model (R-2) for the SY pyrolysis and to a nucleation growth model (A(1.2)) for the MB pyrolysis. The main evolved gases were C-4-C-24 alkenes and dienes for SY and C-6-C-41 alkanes and C-8 -C-41 alkenes for MB. The pyrolysis dynamics and reaction pathways of the medical plastic wastes have important implications for waste stream reduction, pollution control, and reactor optimization.

Açıklama

Anahtar Kelimeler

Medical Plastic Wastes, Pyrolysis, Product Distribution, TG-FTIR, Py-GC/MS

Kaynak

Journal Of Hazardous Materials

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

402

Sayı

Künye