SenDemonNet: Sentiment analysis for demonetization tweets using heuristic deep neural network

dc.authorid0000-0002-3325-4731en_US
dc.contributor.authorKayıkçı, Şafak
dc.date.accessioned2023-11-27T11:17:56Z
dc.date.available2023-11-27T11:17:56Z
dc.date.issued2022en_US
dc.departmentBAİBÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.description.abstractSentiment analysis is one of the efficient models for extracting opinion mining with identification and classification from unstructured text data such as product reviews or microblogs. It is used to gain feedback from political campaigns, brand reviews, marketing analysis, and customers. The sentiment analysis on Twitter data is a recent research field in the natural processing. The dataset is gathered from the Twitter package in R along with Twitter API. The main intent of this paper is to understand the public opinion on the recently implemented demonetization policy using the proposed SenDemonNet. Initially, the tweet preprocessing was done, which is intended for cleaning the text data. Then, the feature extraction is performed by Bag of n-grams, TF-IDF, and the word2vec algorithm. The main objective of this work is a weighted feature selection that is developed by the hybrid Forest-Whale Optimization Algorithm (F-WOA) to get the best classification outcome. With these features, the Heuristic Deep Neural Network (HDNN) is adopted for classification, where the proposed FOA and WOA tune the parameter of DNN for reaching the maximum accuracy rate. From the statistical analysis, the performance of the designed F-WOA-DNN is 1.8%, 1.9%, 1.86%, and 2% enhanced than PSO-DNN, GWO-DNN, WOA-DNN, FOA-DNN, SVM, CNN, LSTM, and DNN respectively. Extensive experimental results show that SenDemonNet outperforms its competitors, producing an impressive increase in the classification accuracy on the benchmark dataset.en_US
dc.identifier.citationKayıkçı, Ş. (2022). SenDemonNet: sentiment analysis for demonetization tweets using heuristic deep neural network. Multimedia Tools and Applications, 81(8), 11341-11378.en_US
dc.identifier.doi10.1007/s11042-022-11929-w
dc.identifier.endpage11378en_US
dc.identifier.issn1380-7501
dc.identifier.issn1573-7721
dc.identifier.issue8en_US
dc.identifier.pmid35194380en_US
dc.identifier.scopus2-s2.0-85124762273en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage1134en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s11042-022-11929-w
dc.identifier.urihttps://hdl.handle.net/20.500.12491/11886
dc.identifier.volume81en_US
dc.identifier.wosWOS:000757200200001en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakPubMeden_US
dc.institutionauthorKayıkçı, Şafak
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofMultimedia Tools and Applicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSentiment Analysisen_US
dc.subjectSenDemonNeten_US
dc.subjectDemonetization Policyen_US
dc.subjectModelen_US
dc.subjectClassificationen_US
dc.subjectCNNen_US
dc.titleSenDemonNet: Sentiment analysis for demonetization tweets using heuristic deep neural networken_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
safak-kayikci.pdf
Boyut:
4.22 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin/Full Text
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: