Influence of amorphous boron grain size, high ısostatic pressure, annealing temperature, and filling density of unreacted material on structure, critical parameters, n-value, and engineering critical current density in MgB2 wires
Dosyalar
Tarih
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
Özet
Our results show that a lower density of unreacted Mg + B material during an Mg solid-state synthesis reaction leads to a significant reduction in the quantity of the superconducting phase and lowers the homogeneity of the superconducting material. It also significantly reduces the irreversible magnetic field (B-irr), critical temperature (T-c), upper magnetic field (B-c2), engineered critical current density (J(ec)), and n-value, despite high isostatic pressure (HIP) treatment and the use of nanoboron in the sample. Our measurements show that samples with large boron grains with an 8% higher density of unreacted Mg + B material allow better critical parameters to be achieved. Studies have shown that the density of unreacted material has little effect on B-irr, T-c, B-c2, J(ec), and the n-value for an Mg liquid-state synthesis reaction. The results show that the critical parameters during an Mg liquid-state synthesis reaction depend mainly on grain size. Nanoboron grains allow for the highest B-irr, T-c, B-c2, J(ec), and n-values. Scanning electron microscopy (SEM) images taken from the longitudinal sections of the wires show that the samples annealed under low isostatic pressure have a highly heterogeneous structure. High isostatic pressure heat treatment greatly improves the homogeneity of MgB2.