Orientation-controlled nonradiative energy transfer to colloidal nanoplatelets: Engineering dipole orientation factor

dc.authorid0000-0003-1977-6485en_US
dc.authorid0000-0002-6250-6977en_US
dc.authorid0000-0002-9158-8764en_US
dc.authorid0000-0002-4628-0197en_US
dc.authorid0000-0003-1207-7016en_US
dc.authorid0000-0003-2212-965Xen_US
dc.contributor.authorErdem, Onur
dc.contributor.authorGüngör, Kıvanç
dc.contributor.authorGüzeltürk, Burak
dc.contributor.authorTanrıöver, İbrahim
dc.contributor.authorSak, Mustafa
dc.contributor.authorOlutaş, Murat
dc.contributor.authorDede, Didem
dc.date.accessioned2021-06-23T19:51:25Z
dc.date.available2021-06-23T19:51:25Z
dc.date.issued2019
dc.departmentBAİBÜ, Fen Edebiyat Fakültesi, Fizik Bölümüen_US
dc.description.abstractWe proposed and showed strongly orientation-controlled Forster resonance energy transfer (FRET) to highly anisotropic CdSe nanoplatelets (NPLs). For this purpose, we developed a liquidair interface self-assembly technique specific to depositing a complete monolayer of NPLs only in a single desired orientation, either fully stacked (edge-up) or fully nonstacked (face-down), with near-unity surface coverage and across large areas over 20 cm(2). These NPL monolayers were employed as acceptors in an energy transfer working model system to pair with CdZnS/ZnS core/shell quantum dots (QDs) as donors. We found the resulting energy transfer from the QDs to be significantly accelerated (by up to 50%) to the edge-up NPL monolayer compared to the face-down one. We revealed that this acceleration of FRET is accounted for by the enhancement of the dipoledipole interaction factor between a QD-NPL pair (increased from 1/3 to 5/6) as well as the closer packing of NPLs with stacking. Also systematically studying the distance-dependence of FRET between QDs and NPL monolayers via varying their separation (d) with a dielectric spacer, we found out that the FRET rate scales with d(-4) regardless of the specific NPL orientation. Our FRET model, which is based on the original Forster theory, computes the FRET efficiencies in excellent agreement with our experimental results and explains well the enhancement of FRET to NPLs with stacking. These findings indicate that the geometrical orientation of NPLs and thereby their dipole interaction strength can be exploited as an additional degree of freedom to control and tune the energy transfer rate.en_US
dc.identifier.doi10.1021/acs.nanolett.9b00681
dc.identifier.endpage4305en_US
dc.identifier.issn1530-6984
dc.identifier.issn1530-6992
dc.identifier.issue7en_US
dc.identifier.pmid31185570en_US
dc.identifier.scopus2-s2.0-85067364801en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage4297en_US
dc.identifier.urihttps://doi.org/10.1021/acs.nanolett.9b00681
dc.identifier.urihttps://hdl.handle.net/20.500.12491/9981
dc.identifier.volume19en_US
dc.identifier.wosWOS:000475533900011en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakPubMeden_US
dc.institutionauthorOlutaş, Murat
dc.language.isoenen_US
dc.publisherAmer Chemical Socen_US
dc.relation.ispartofNano Lettersen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSemiconductor Nanocrystalsen_US
dc.subjectNanoplateletsen_US
dc.subjectLiquid-air Interface Self-assemblyen_US
dc.subjectStackingen_US
dc.subjectEnergy Transferen_US
dc.subjectDipole Orientationen_US
dc.titleOrientation-controlled nonradiative energy transfer to colloidal nanoplatelets: Engineering dipole orientation factoren_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
onur-erdem.pdf
Boyut:
4.25 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin/Full Text