A multi-stage melanoma recognition framework with deep residual neural network and hyperparameter optimization-based decision support in dermoscopy images

dc.authorid0000-0002-4099-1254en_US
dc.authorid0000-0002-9062-7493en_US
dc.authorid0000-0003-1840-9958en_US
dc.contributor.authorAlenezi, Fayadh
dc.contributor.authorArmghan, Ammar
dc.contributor.authorPolat, Kemal
dc.date.accessioned2023-08-14T10:39:13Z
dc.date.available2023-08-14T10:39:13Z
dc.date.issued2023en_US
dc.departmentBAİBÜ, Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümüen_US
dc.descriptionDeanship of Scientific Research at Jouf University;en_US
dc.description.abstractThis paper developed a novel melanoma diagnosis model from dermoscopy images using a novel hybrid model. Melanoma is the most dangerous and rarest type of skin cancer. It is seen because of the uncontrolled prolif-eration of melanocyte cells that give color to the skin. Dermoscopy is a critical auxiliary diagnostic method in the differentiation of pigmented moles, which show moles by magnifying 10-20 times from skin cancers. This paper proposes a multi-stage melanoma recognition framework with skin lesion images obtained from dermoscopy. This model developed a practical pre-processing approach that includes dilation and pooling layers to remove hair details and reveal details in dermoscopy images. A deep residual neural network was then utilized as the feature extractor for processed images.Additionally, the Relief algorithm selected practical and distinctive features from these features. Finally, these selected features were fed to the input of the support vector machine (SVM) classifier. In addition, the Bayesian optimization algorithm was used for the optimum parameter selection of the SVM method. The International Skin Imaging Collaboration (ISIC-2019 and ISIC-2020) datasets were used to test the performance of the pro-posed model. As a result, the proposed model produced approximately 99% accuracy for classifying melanoma or benign from skin lesion images. These results show that the proposed model can help physicians to automatically identify melanoma based on dermatological imaging.en_US
dc.description.sponsorshipDeanship of Scientific Research at Jouf University; [DSR2022-RG-0112]en_US
dc.identifier.citationAlenezi, F., Armghan, A., & Polat, K. (2023). A multi-stage melanoma recognition framework with deep residual neural network and hyperparameter optimization-based decision support in dermoscopy images. Expert Systems with Applications, 215, 119352.en_US
dc.identifier.doi10.1016/j.eswa.2022.119352
dc.identifier.endpage11en_US
dc.identifier.issn0957-4174
dc.identifier.issn1873-6793
dc.identifier.scopus2-s2.0-85143533051en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage1en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.eswa.2022.119352
dc.identifier.urihttps://hdl.handle.net/20.500.12491/11512
dc.identifier.volume215en_US
dc.identifier.wosWOS:000906892100002en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.institutionauthorPolat, Kemal
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofExpert Systems with Applicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMelanoma Recognitionen_US
dc.subjectResidual Neural Networken_US
dc.subjectFeature Selectionen_US
dc.subjectBayesian Optimizationen_US
dc.subjectSVM Classifieren_US
dc.subjectCanceren_US
dc.titleA multi-stage melanoma recognition framework with deep residual neural network and hyperparameter optimization-based decision support in dermoscopy imagesen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
fayadh-alenezi1.pdf
Boyut:
4.09 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam metin/Full text
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: