Surface energy characterization of preservative-treated wood and e-glass/phenolic composites

Yükleniyor...
Küçük Resim

Tarih

2004

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Forest Products Soc

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

The effects of various wood preservative systems and treatment processes on the surface energy of wood and E-glass/phenolic pultruded composite material for wood reinforcement were characterized using surface energy methods. Southern yellow pine and pultruded E-glass/phenolic FRP (fiberglass reinforced plastic) composite sheet were treated with two common wood preservative chemicals (waterborne chromated copper arsenate [CCA] and organometallic copper naphthenate [CuN]). Surface energy of the preservative-treated and untreated wood and FRP composite material was determined by means of static contact angle analysis using the Good-Girifalco (geometric mean) and Chang approaches. It was found that the total surface energies of the surfaces of these materials were greatly affected by preservative treatments. As preservative retentions change, the surface energies of solids were also changed. The surface energy of CCA- and CuN-treated FRP composite decreased as a result of exposure to preservative treatments, while increased CCA retentions resulted in increases of surface energy in southern pine wood. This difference in surface energy behavior with CCA retention is attributed to the accumulation of high surface energy metallic salts on lumen surfaces in treated wood and the CSM layer of the FRP composite. Scanning electron microscopy showed deposits of metal oxides on the cell wall of CCA-treated wood. A discussion of surface energy changes and the possible effects on wettability and bondability of treated wood and FRP composite surfaces is presented.

Açıklama

Anahtar Kelimeler

Wood Preservative, Surface, Preservative, Surface Energy

Kaynak

Forest Products Journal

WoS Q Değeri

Q3

Scopus Q Değeri

Q3

Cilt

54

Sayı

12

Künye