Detection of Alzheimer's disease from EEG signals using explainable artificial intelligence analysis

Yükleniyor...
Küçük Resim

Tarih

2024

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Institute of Electrical and Electronics Engineers Inc.

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In this study, the evaluation of classification models with frequency and chaotic features was aimed for the classification of healthy individuals and Alzheimer's patients using EEG signals. Morlet wavelet transform was employed for calculating EEG features to determine the characteristics in the frequency domain. Additionally, Lyapunov exponents were utilized for the analysis of chaotic features, and significant EEG channels were identified from the obtained results of the wavelet transform. Using permutation importance, the impact of each feature on the performance of the classification model was assessed. In this evaluation, the Random Forest model stood out in overall performance, showing the highest accuracy (0.7614), precision (0.7546), and F1 score (0.793) compared to other models. Furthermore, the Naive Bayes model achieved the highest sensitivity (0.8662) in detecting positive instances. © 2024 IEEE.

Açıklama

Berdan Civata B.C.; et al.; Figes; Koluman; Loodos; Tarsus University
32nd IEEE Conference on Signal Processing and Communications Applications, SIU 2024 -- 15 May 2024 through 18 May 2024 -- Mersin -- 201235

Anahtar Kelimeler

Alzheimer's Disease, Classification, Electroencephalography, Machine Learning

Kaynak

32nd IEEE Conference on Signal Processing and Communications Applications, SIU 2024 - Proceedings

WoS Q Değeri

Scopus Q Değeri

N/A

Cilt

Sayı

Künye