Monitoring diel dissolved oxygen dynamics through integrating wavelet denoising and temporal neural networks
dc.authorid | 0000-0003-1099-4363 | en_US |
dc.authorid | 0000-0002-0156-1657 | en_US |
dc.contributor.author | Evrendilek, Fatih | |
dc.contributor.author | Karakaya, Nusret | |
dc.date.accessioned | 2021-06-23T19:36:19Z | |
dc.date.available | 2021-06-23T19:36:19Z | |
dc.date.issued | 2014 | |
dc.department | BAİBÜ, Mühendislik Fakültesi, Çevre Mühendisliği Bölümü | en_US |
dc.description.abstract | Diel dissolved oxygen (DO) time series measured continuously using proximal sensors in situ for a temperate lake were denoised using discrete wavelet transform (DWT) with the orthogonal wavelet families of coiflet, daubechies, and symmlet with order of 10. Diel DO time series denoised were modeled using nine temporal artificial neural networks (ANNs) as a function of water level, water temperature, electrical conductivity, pH, day of year, and hour. Our results showed that time-lag recurrent network (TLRN) using denoised data emulated diel DO dynamics better than the best-performing TLRN using the original data, time-delay neural network (TDNN), and recurrent network (RNN). Daubechies basis dealt with diel DO data slightly better than the other bases given its coefficient of determination (r (2) = 87.1 %), while symmlet performed slightly better than the other bases in terms of root mean square error (RMSE = 1.2 ppm) and mean absolute error (MAE = 0.9 ppm). | en_US |
dc.identifier.doi | 10.1007/s10661-013-3476-9 | |
dc.identifier.endpage | 1591 | en_US |
dc.identifier.issn | 0167-6369 | |
dc.identifier.issn | 1573-2959 | |
dc.identifier.issue | 3 | en_US |
dc.identifier.pmid | 24100799 | en_US |
dc.identifier.scopus | 2-s2.0-84895793454 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.startpage | 1583 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s10661-013-3476-9 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12491/7971 | |
dc.identifier.volume | 186 | en_US |
dc.identifier.wos | WOS:000330715300021 | en_US |
dc.identifier.wosquality | Q2 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.indekslendigikaynak | PubMed | en_US |
dc.institutionauthor | Evrendilek, Fatih | |
dc.institutionauthor | Karakaya, Nusret | |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | Environmental Monitoring And Assessment | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Diel Dynamics | en_US |
dc.subject | Discrete Wavelet Transform | en_US |
dc.subject | Surface Water | en_US |
dc.subject | Time Series | en_US |
dc.title | Monitoring diel dissolved oxygen dynamics through integrating wavelet denoising and temporal neural networks | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Küçük Resim Yok
- İsim:
- fatih-evrendilek-7971.pdf
- Boyut:
- 464.03 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam metin/Full text