Kinetics of carbon nanotube-loaded epoxy curing: rheometry, differential scanning calorimetry, and radio frequency heating
Yükleniyor...
Tarih
2021
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
The isothermal curing kinetics of carbon nanotube loaded epoxy was investigated using rheometry and differential scanning calorimetry (DSC) at a range of temperatures. Rheo-kinetics was used to observe time-dependent rheological changes in elastic (G?) and viscous (G?) moduli, and complex viscosities of epoxy-CNT samples during isothermal curing. DSC measurements were also performed to monitor the curing reaction, in order to compare against the rheo-kinetic parameters. The Kamal-Sourour kinetic model describes the curing of the epoxy-CNT system for rheo-kinetics and DSC well. The activation energies of the curing reaction were found to be ?36 kJ/mol and ?33 kJ/mol using rheo-kinetics analysis and DSC, respectively. In addition, radio-frequency (RF) electromagnetic fields were used to heat and cure the epoxy-CNT sample; such heating techniques are valuable in a number of epoxy processing technologies. G?, G?, and complex viscosities of RF heated samples were measured to monitor RF-aided curing. This allows us to monitor the curing kinetics inside samples being heated by RF fields; the data indicate that RF-aiding curing is faster than curing rates for samples undergoing curing inside a measurement device such as a rheometer or DSC, because the heat generated is immediate and volumetric.
Açıklama
Anahtar Kelimeler
Curing Kinetics, DSC, Epoxy-CNT, Radio Frequency Heating, Rheology
Kaynak
Carbon
WoS Q Değeri
Q1
Scopus Q Değeri
Q1
Cilt
175