Forecasting the stability of A 4-node architecture smart grid using machine learning
dc.authorid | 0000-0002-0271-6868 | |
dc.authorid | 0000-0002-9735-5697 | |
dc.authorid | 0000-0003-2989-3781 | |
dc.contributor.author | Hangün, Batuhan | |
dc.contributor.author | Eyecioğlu, Önder | |
dc.contributor.author | Beken, Murat | |
dc.date.accessioned | 2024-09-25T19:59:59Z | |
dc.date.available | 2024-09-25T19:59:59Z | |
dc.date.issued | 2022 | |
dc.department | BAİBÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.description | 10th International Conference on Smart Grid (icSmartGrid) -- JUN 27-29, 2022 - Istanbul, TURKEY | en_US |
dc.description.abstract | Smart grid stability is one of the most important factors that can be used as a criterion for assessing the usability of smart grid architecture, so testing and predicting stability under various circumstances hold great importance. As a result of the increase in residential and industrial structures, and the integration of renewable energy into the smart grids, some intelligent solutions to predict stability to prevent unwanted instabilities in a future smart grid architecture is needed. In this study, we used various machine learning methods to predict smart grid stability. We approached the problem as a classification problem, we used a 4-node architecture smart grid dataset, and applied some well-known classification methods to classify the dataset into two classes which are stable and unstable. For the classification part, we used k-Nearest Neighbour (kNN), neural networks (NN), a support vector machine (SVM), and a decision tree. All four methods were tested under different hyper parameters. Finally, the ones with the best results were reported. | en_US |
dc.description.sponsorship | IEEE | en_US |
dc.identifier.doi | 10.1109/ICSMARTGRID55722.2022.9848635 | |
dc.identifier.endpage | 442 | en_US |
dc.identifier.isbn | 978-1-6654-8605-7 | |
dc.identifier.isbn | 978-1-6654-8604-0 | |
dc.identifier.scopus | 2-s2.0-85137796114 | en_US |
dc.identifier.scopusquality | N/A | en_US |
dc.identifier.startpage | 440 | en_US |
dc.identifier.uri | https://doi.org/10.1109/ICSMARTGRID55722.2022.9848635 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12491/14024 | |
dc.identifier.wos | WOS:001267854400040 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Eyecioğlu, Önder | |
dc.institutionauthor | Beken, Murat | |
dc.institutionauthorid | 0000-0002-9735-5697 | |
dc.institutionauthorid | 0000-0003-2989-3781 | |
dc.language.iso | en | en_US |
dc.publisher | Ieee | en_US |
dc.relation.ispartof | 2022 10th International Conference on Smart Grid, Icsmartgrid | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.snmz | YK_20240925 | en_US |
dc.subject | Smart Grid | en_US |
dc.subject | Stability | en_US |
dc.subject | Machine Learning | en_US |
dc.subject | Classification | en_US |
dc.subject | Intelligent Solutions | |
dc.subject | Hyper Parameters | |
dc.title | Forecasting the stability of A 4-node architecture smart grid using machine learning | en_US |
dc.type | Conference Object | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- batuhan-hangün.pdf
- Boyut:
- 272.42 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam metin/Full text