Forecasting the stability of A 4-node architecture smart grid using machine learning
Dosyalar
Tarih
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
Özet
Smart grid stability is one of the most important factors that can be used as a criterion for assessing the usability of smart grid architecture, so testing and predicting stability under various circumstances hold great importance. As a result of the increase in residential and industrial structures, and the integration of renewable energy into the smart grids, some intelligent solutions to predict stability to prevent unwanted instabilities in a future smart grid architecture is needed. In this study, we used various machine learning methods to predict smart grid stability. We approached the problem as a classification problem, we used a 4-node architecture smart grid dataset, and applied some well-known classification methods to classify the dataset into two classes which are stable and unstable. For the classification part, we used k-Nearest Neighbour (kNN), neural networks (NN), a support vector machine (SVM), and a decision tree. All four methods were tested under different hyper parameters. Finally, the ones with the best results were reported.