Kinetics, thermodynamics, gas evolution and empirical optimization of cattle manure combustion in air and oxy-fuel atmospheres

Yükleniyor...
Küçük Resim

Tarih

2019

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Pergamon-Elsevier Science Ltd

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Thermogravimetric (TG) and TG-Fourier transform infrared (FTIR) analyses were performed to quantify the comparative performances of cattle manure combustion in air (N-2/O-2) and oxy-fuel (CO2/O-2) atmospheres at four heating rates. Out of the distributed activation energy model, Flynn-Wall-Ozawa (FWO), Friedman and Starink methods (R-2 >= 0.86), the FWO method on average led to the highest R-2 value with the lowest activation energy. On average, the combustion in the oxy-fuel atmosphere had the lowest activation energy (180.6 kJ/mol) with the highest R-2 value (0.9812). Our TG-FTIR results showed that CO2 was the major gas evolution of the cattle manure combustion. Interaction effects of atmosphere type by heating rate on the multiple responses of remaining mass, derivative TG, and differential scanning calorimetry were found to be significant (p < 0.001). The joint optimization of the three responses was achieved at 424.6 degrees C in the air atmosphere at the heating rate of 40 K/min.

Açıklama

Anahtar Kelimeler

Cattle Manure, TG-FTIR, Isoconversional Methods, Combustion Characteristics

Kaynak

Applied Thermal Engineering

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

149

Sayı

Künye