SPOSDS: A smart polycystic ovary syndrome diagnostic system using machine learning
dc.authorid | 0000-0002-5987-7101 | en_US |
dc.authorid | 0000-0003-1688-8772 | en_US |
dc.authorid | 0000-0001-5155-022X | en_US |
dc.authorid | 0000-0003-1840-9958 | en_US |
dc.contributor.author | Tiwari, Shamik | |
dc.contributor.author | Kane, Lalit | |
dc.contributor.author | Koundal, Deepika | |
dc.contributor.author | Jain, Anurag | |
dc.contributor.author | Alhudhaif, Adi | |
dc.contributor.author | Polat, Kemal | |
dc.date.accessioned | 2023-10-26T13:39:54Z | |
dc.date.available | 2023-10-26T13:39:54Z | |
dc.date.issued | 2022 | en_US |
dc.department | BAİBÜ, Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümü | en_US |
dc.description | This work has been supported by Taif University Researchers Sup-porting Project Number (TURSP-2020/114) , Taif University, Taif, Saudi Arabia. | en_US |
dc.description.abstract | Polycystic Ovary Syndrome (PCOS) is a hormonal disorder that affects a large percentage of women of reproductive age. PCOS causes imbalanced or delayed menstrual cycles and produces high levels of the male hormone. The ovaries may create a significant number of little fluid-filled sacs (follicles) yet fail to discharge eggs regularly. The actual cause of PCOS is uncertain. However, early exposure and curing, as well as weight loss, may lower the threat of long-term complications. This study focuses on PCOS diagnosis based on a clinical dataset supplied by Kottarathil, accessible via its Kaggle repository. Non-invasive screening parameters are used to evaluate a range of machine learning approaches for screening PCOS patients without the use of invasive diagnostics. According to the findings of the experiments, the Random Forest (RF) method outperforms the other prominent machine learning algorithms with an accuracy of 93.25%. Further, the out-of-bag (OOB) error is utilized for assessing the prediction performance of RF. | en_US |
dc.description.sponsorship | Taif University Researchers Supporting Project, Taif University, Taif, Saudi Arabia [TURSP-2020/114]; Taif University, Taif, Saudi Arabia | en_US |
dc.identifier.citation | Tiwari, S., Kane, L., Koundal, D., Jain, A., Alhudhaif, A., Polat, K., ... & Althubiti, S. A. (2022). SPOSDS: A smart Polycystic Ovary Syndrome diagnostic system using machine learning. Expert Systems with Applications, 203, 117592. | en_US |
dc.identifier.doi | 10.1016/j.eswa.2022.117592 | |
dc.identifier.endpage | 14 | en_US |
dc.identifier.issn | 0957-4174 | |
dc.identifier.issn | 1873-6793 | |
dc.identifier.scopus | 2-s2.0-85130160464 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.startpage | 1 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.eswa.2022.117592 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12491/11796 | |
dc.identifier.volume | 203 | en_US |
dc.identifier.wos | WOS:000803735500008 | en_US |
dc.identifier.wosquality | Q1 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Polat, Kemal | |
dc.language.iso | en | en_US |
dc.publisher | Pergamon-Elsevier Science Ltd | en_US |
dc.relation.ispartof | Expert Systems with Applications | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Polycystic Ovary Syndrome | en_US |
dc.subject | Smart Diagnosis | en_US |
dc.subject | Machine Learning | en_US |
dc.subject | Random Forest | en_US |
dc.subject | Out of Bag Error | en_US |
dc.subject | Tool | en_US |
dc.title | SPOSDS: A smart polycystic ovary syndrome diagnostic system using machine learning | en_US |
dc.type | Article | en_US |