Cuff-less continuous blood pressure estimation from Electrocardiogram(ECG) and Photoplethysmography (PPG) signals with artificial neural network

Yükleniyor...
Küçük Resim

Tarih

2018

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Institute of Electrical and Electronics Engineers Inc.

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Continuous blood measurement important information about the health status of the individuals. Conventional methods use a cuff for blood pressure measurement and cannot be measured continuously. In this study, we proposed a system that estimates systolic blood pressure (SP) and diastolic blood pressure (DP) for each heart beat by extracting attributes from ECG and PPG signals. Simultaneous ECG and PPG signals from the PhysioNet Database are pre-processed (denoising, artifact cleaning and baseline wandering) to remove noise and artifacts and segmented into R-R peaks. For each heartbeat, 22-time domain features were extracted from ECG and PPG signals. SP and DP values were estimated by introducing these 22 attributes to the model of Lavenberg-Marquardt artificial neural networks (ANN). Arterial blood pressure (ABP) was also taken from the PhysioNet MIMIC II database along with ECG and PPG signals. ABP signals have been used as targets in the artificial neural network. The system performance has been evaluated by calculating the difference between the estimated ABP values and the actual by the ANN model. The performance value between the predicted SP and actual SP values is -0.14 ± 2.55 (mean ± standard deviation) and the performance value between estimated DP and actual DP values is -0.004 ± 1.6. The obtained results have shown that the proposed model has predicted blood pressure with high accuracy. In this study, SP and DP values can also be measured directly without any calibration in blood pressure estimation. © 2018 IEEE.

Açıklama

Aselsan;et al.;Huawei;IEEE Signal Processing Society;IEEE Turkey Section;Netas
26th IEEE Signal Processing and Communications Applications Conference, SIU 2018 -- 2 May 2018 through 5 May 2018 -- -- 137780

Anahtar Kelimeler

Blood pressure estimation with Artificial Neural Network, Cuffless blood pressure estimation, ECG, PPG, EKG, PPG, Maşonsuz Kan Basınç Tahmini, Yapay Sinir Ağları İle Kan Basınç Tahmini

Kaynak

26th IEEE Signal Processing and Communications Applications Conference, SIU 2018

WoS Q Değeri

N/A

Scopus Q Değeri

N/A

Cilt

Sayı

Künye