Juxtaposing the spatiotemporal drivers of sediment CO2, CH4, and N2O effluxes along ecoregional, wet-dry, and diurnal gradients

Yükleniyor...
Küçük Resim

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Turkish National Committee For Air Pollution And Control (TUNCAP)

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Globally, lakes are facing greater drying rates than before the industrial revolution due to global climate change, water withdrawals, and land use and land cover changes. Carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes of the lakeshore sediments still remain poorly represented and understood, with important implications for the global carbon (C) and nitrogen (N) budget closures. This study quantifies spatiotemporal dynamics and (non-)linear drivers of CO2, CH4, and N2O effluxes from sediments of 20 lakes along wet-dry lakeshore, diurnal, and ecoregional gradients in the western part of Turkey. Mean daily CO2, CH4, and N2O effluxes were estimated at 98.64 ± 386.47, 1.42 ± 1.71, and 0.12 ± 0.24 from wet sediments and at 393.60 ± 386.94, 0.82 ± 1.58, and 0.24 ± 0.22 from dry sediments, with an overall mean of 242.28 ± 404.1, 1.09 ± 1.53, and 0.18 ± 0.23 mmol m−2 d−1, respectively. The variability in the GHG effluxes was most sensitive to the interaction between latitude and wet-dry location. Out of 14 significant environmental drivers, the most important ones that minimized and maximized CO2, CH4, and N2O effluxes were PO4–P content, three-summer month standardized precipitation index, and redox potential, respectively, based on a random forest-based optimization.

Açıklama

This research is a part of Pelin Erturk Ari's PhD dissertation and funded by TUBITAK (No: 119Y007) and BAIBU (No: 2019.09.02.1424). We are grateful to Dr. Akif Ari for his help with field sampling and the gas chromatographic methods, Ceren Bozkurt and Haluk Fidan for their help with laboratory analyses, and Dr. Onder Gulbeyaz for his help with location map.

Anahtar Kelimeler

Greenhouse Gases, Dry Flux, Climate Change, Inland Waters, Biogeochemical Cycles, Spatiotemporal Drivers, Carbon-Dioxide Emissions, Nitrous-Oxide Emissions, Exposed Sediments, Methane Emissions, Soil Respiration, Greenhouse Gases, Organic-Matter, Forest Soils, Land-Use, Fluxes

Kaynak

Atmospheric Pollution Research

WoS Q Değeri

Q2

Scopus Q Değeri

Q1

Cilt

12

Sayı

4

Künye

Arı, P. E., Karakaya, N., & Evrendilek, F. (2021). Juxtaposing the spatiotemporal drivers of sediment CO2, CH4, and N2O effluxes along ecoregional, wet-dry, and diurnal gradients. Atmospheric Pollution Research, 12(4), 160-171.