Estimation of body fat percentage using hybrid machine learning algorithms
dc.authorid | 0000-0001-7345-2727 | |
dc.contributor.author | Uçar, Muhammed Kürşad | |
dc.contributor.author | Uçar, Zeliha | |
dc.contributor.author | Köksal, Fatih | |
dc.contributor.author | Daldal, Nihat | |
dc.date.accessioned | 2021-06-23T19:55:11Z | |
dc.date.available | 2021-06-23T19:55:11Z | |
dc.date.issued | 2021 | |
dc.department | BAİBÜ, Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümü | en_US |
dc.description.abstract | Before obesity treatment, body fat percentage (BFP) should be determined. BFP cannot be measured by weighing. The devices developed to produce solutions to this problem are called "Body Analysis Devices". These devices are very costly. Therefore, more practical and cost-effective solutions are needed. This study aims to determine BFP using hybrid machine learning methods with high accuracy rate and minimum parameter. This study uses real data sets, which are 13 anthropometric measurements of individuals. Different feature groups were created with feature selection algorithm. In the next step, 4 different hybrid models were created by using MLFFNN, SVMs, and DT regression models. According to the results, BFP of individuals can be estimated with a correlation value of R = 0.79 with one anthropometric measurement. The results show that the developed system can be used to estimate BFP in practice. Besides, the system can calculate BFP with just one anthropometric measurement without device requirement. (C) 2020 Elsevier Ltd. All rights reserved. | en_US |
dc.identifier.doi | 10.1016/j.measurement.2020.108173 | |
dc.identifier.issn | 0263-2241 | |
dc.identifier.issn | 1873-412X | |
dc.identifier.scopus | 2-s2.0-85088832830 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.measurement.2020.108173 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12491/10749 | |
dc.identifier.volume | 167 | en_US |
dc.identifier.wos | WOS:000579500000009 | en_US |
dc.identifier.wosquality | Q1 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Daldal, Nihat | |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Sci Ltd | en_US |
dc.relation.ispartof | Measurement | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Body Composition | en_US |
dc.subject | Body Fat Percentage Calculation | en_US |
dc.subject | Body Fat Percentage Estimation | en_US |
dc.subject | Machine Learning | en_US |
dc.subject | Artificial Intelligence | en_US |
dc.title | Estimation of body fat percentage using hybrid machine learning algorithms | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Küçük Resim Yok
- İsim:
- muhammed-kursad-ucar.pdf
- Boyut:
- 2.47 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin/Full Text