Microstructural and mechanical characterization of laser beam welded AA6056 Al-alloy

Yükleniyor...
Küçük Resim

Tarih

2011

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier Science Sa

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Laser beam welding is considered to be a suitable joining process for high speed, low distortion, and high quality fabrication of aircraft structures manufactured from aluminum alloys, which are mainly preferred due to their favourable properties, such as high strength to weight ratio, ease of forming and high thermal and electrical conductivity. However, the laser beam welding of 6000 series aluminum alloys may exhibit a tendency to solidification cracking, and porosity may be a major problem unless appropriate welding parameters and filler metal are employed. In this study, the microstructural aspects and mechanical properties of laser beam welded new generation aluminum alloy, namely 6056, developed especially for aircraft structures, are investigated. A continuous wave CO2 laser using AlSi12 filler wire was employed. A detailed microstructural examination of the weld region was carried out by Scanning Electron Microscopy (SEM). Standard tensile and microflat tensile specimens extracted from the welded plates were tested at room temperature for the determination of general and local mechanical properties of the welded joints. Extensive microhardness measurements were also conducted. Crack growth mechanisms of the joints produced were also determined by conducting fatigue tests under various stress ratios (i.e., 0.1 <= R <= 0.7). (C) 2011 Elsevier B.V. All rights reserved.

Açıklama

Anahtar Kelimeler

Aluminum Alloys, Laser Beam Welding, Strength Undermatching, Mechanical Properties, Fatigue

Kaynak

Materials Science And Engineering A-Structural Materials Properties Microstructure And Processing

WoS Q Değeri

Q2

Scopus Q Değeri

Q1

Cilt

528

Sayı

24

Künye