Predicting diel, diurnal and nocturnal dynamics of dissolved oxygen and chlorophyll-a using regression models and neural networks
dc.authorid | 0000-0003-1099-4363 | en_US |
dc.authorid | 0000-0002-0156-1657 | en_US |
dc.authorid | 0000-0002-9604-4539 | en_US |
dc.contributor.author | Karakaya, Nusret | |
dc.contributor.author | Evrendilek, Fatih | |
dc.contributor.author | Güngör, Kerem | |
dc.contributor.author | Önal, Deniz | |
dc.date.accessioned | 2021-06-23T19:34:16Z | |
dc.date.available | 2021-06-23T19:34:16Z | |
dc.date.issued | 2013 | |
dc.department | BAİBÜ, Mühendislik Fakültesi, Çevre Mühendisliği Bölümü | en_US |
dc.description.abstract | Human-induced and natural interruptions with continuous streams of observational data necessitate the development of gap-filling and prediction strategies towards better understanding, monitoring and management of aquatic systems. This study quantified the efficacy of multiple non-linear regression (MNLR) versus artificial neural network (ANN) models as well as the temporal partitioning of diurnal versus nocturnal data for the predictions of chlorophyll-a (chl-a) and dissolved oxygen (DO) dynamics. The temporal partitioning increased the predictive performances of the best MNLR models of diurnal DO by 45% and nocturnal DO by 4%, relative to the best diel MNLR model of diel DO (r(adj)(2) = 68.8%). The ANN-based predictions had a higher predictive power than the MNLR-based predictions for both chl-a and DO except for diurnal DO dynamics. The best ANNs based on independent validations were multilayer perceptron (MLP) for diel chl-a, generalized feedforward (GFF) for diurnal and nocturnal chl-a, MLP for diel DO, GFF for diurnal DO, and MLP for nocturnal DO. | en_US |
dc.identifier.doi | 10.1002/clen.201200683 | |
dc.identifier.endpage | 877 | en_US |
dc.identifier.issn | 1863-0650 | |
dc.identifier.issn | 1863-0669 | |
dc.identifier.issue | 9 | en_US |
dc.identifier.scopus | 2-s2.0-84883445093 | en_US |
dc.identifier.scopusquality | Q3 | en_US |
dc.identifier.startpage | 872 | en_US |
dc.identifier.uri | https://doi.org/10.1002/clen.201200683 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12491/7449 | |
dc.identifier.volume | 41 | en_US |
dc.identifier.wos | WOS:000327816200006 | en_US |
dc.identifier.wosquality | Q2 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Karakaya, Nusret | |
dc.institutionauthor | Evrendilek, Fatih | |
dc.institutionauthor | Güngör, Kerem | |
dc.language.iso | en | en_US |
dc.publisher | Wiley | en_US |
dc.relation.ispartof | Clean-Soil Air Water | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Data-driven Modeling | en_US |
dc.subject | Lake Water Quality | en_US |
dc.subject | Non-linear Dynamics | en_US |
dc.subject | Time Series Data | en_US |
dc.title | Predicting diel, diurnal and nocturnal dynamics of dissolved oxygen and chlorophyll-a using regression models and neural networks | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Küçük Resim Yok
- İsim:
- nusret-karakaya.pdf
- Boyut:
- 255 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam metin/Full text