Response surface optimization, modeling and uncertainty analysis of mass loss response of co-combustion of sewage sludge and water hyacinth
dc.authorid | 0000-0001-6841-6457 | en_US |
dc.authorid | 0000-0003-1099-4363 | en_US |
dc.contributor.author | Liu, Jingyong | |
dc.contributor.author | Huang, Limao | |
dc.contributor.author | Büyükada, Musa | |
dc.contributor.author | Evrendilek, Fatih | |
dc.date.accessioned | 2021-06-23T19:45:20Z | |
dc.date.available | 2021-06-23T19:45:20Z | |
dc.date.issued | 2017 | |
dc.department | BAİBÜ, Mühendislik Fakültesi, Çevre Mühendisliği Bölümü | en_US |
dc.description.abstract | The present study aims at quantifying mass loss percentage (MLP, %) predictions and their stochastic uncertainty when co-combustion of sewage sludge (SS) and water hyacinth (WH) are applied as alternative biomass, materials under different blend ratios (BR), heating rates (HR, degrees C/min) and temperatures (T, degrees C). Optimization and validation of experimental data through Box-Behnken design pointed to 630.9 degrees C for T, 60.1% SS for BR, and 29.9 degrees C/min for HR as the optimal co-combustion parameters to achieve the maximum MLP of 92.4%. Monte Carlo (MC) simulations were used to quantify uncertainty in MLP predictions of the best-fit multiple non-linear regression (MNLR) model derived from the entire experimental data as a function of MC-generated T as the only continuous predictor of the MNLR. Mean MLP value of the MNLR predictions was higher by 19% than that of the MC-simulated T whose mean was higher by only 1% than mean measured T. Incorporating the uncertainty estimation based on Monte Carlo simulations with response surface approach for co-combustion of SS and WH was one of the main novel contributors of the present study to related literature. (C) 2017 Elsevier'Ltd. All rights reserved. | en_US |
dc.identifier.doi | 10.1016/j.applthermaleng.2017.07.008 | |
dc.identifier.endpage | 335 | en_US |
dc.identifier.issn | 1359-4311 | |
dc.identifier.scopus | 2-s2.0-85022224054 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.startpage | 328 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.applthermaleng.2017.07.008 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12491/9136 | |
dc.identifier.volume | 125 | en_US |
dc.identifier.wos | WOS:000410011200030 | en_US |
dc.identifier.wosquality | Q1 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Büyükada, Musa | |
dc.institutionauthor | Evrendilek, Fatih | |
dc.language.iso | en | en_US |
dc.publisher | Pergamon-Elsevier Science Ltd | en_US |
dc.relation.ispartof | Applied Thermal Engineering | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Water Hyacinth | en_US |
dc.subject | Sewage Sludge | en_US |
dc.subject | Box-Behnken Design | en_US |
dc.subject | Data-Driven Modeling | en_US |
dc.subject | Monte Carlo Simulation | en_US |
dc.title | Response surface optimization, modeling and uncertainty analysis of mass loss response of co-combustion of sewage sludge and water hyacinth | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Küçük Resim Yok
- İsim:
- jingyong-liu.pdf
- Boyut:
- 3.14 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin/Full Text