Analysis of surface roughness and flank wear using the taguchi method in milling of niti shape memory alloy with uncoated tools
Yükleniyor...
Dosyalar
Tarih
2020
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Mdpi
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
The aim of this study was to optimize machining parameters to obtain the smallest average surface roughness (Ra) and flank wear (Vb) values as a result of the surface milling of a nickel-titanium (NiTi) shape memory alloy (SMA) with uncoated cutting tools with different nose radius (r(epsilon)) under dry cutting conditions. Tungsten carbide cutting tools with different r(epsilon) (0.4 mm and 0.8 mm) were used in milling operations. The milling process was performed as lateral/surface cutting at three different cutting speeds (V-c) (20, 35 and 50 m/min), feed rates (f(z)) (0.03, 0.07 and 0.14 mm/tooth) and a constant axial cutting depth (0.7 mm). The effects of machining parameters in milling experiments were investigated based on the Taguchi L18 (2(1) x 3(2)) orthogonal sequence, and the data obtained were analyzed using the Minitab 17 software. To determine the effects of processing parameters on Ra and Vb, analysis of variance (ANOVA) was used. The analysis results reveal that the dominant factor affecting the Ra is the cutting tool r(epsilon), while the main factor affecting Vb is the f(z). Since the predicted values and measured values are very close to each other, it can be said that optimization is correct according to the validation test results.
Açıklama
Anahtar Kelimeler
NiTi Shape Memory Alloy, Average Surface Roughness, Flank Wear, Milling, Taguchi Optimization
Kaynak
Coatings
WoS Q Değeri
Q2
Scopus Q Değeri
Q2
Cilt
10
Sayı
12