Dynamic trajectory partition optimization method based on historical trajectory data
dc.authorid | 0000-0001-8913-9057 | |
dc.authorid | 0000-0002-7201-6963 | |
dc.authorid | 0000-0003-1840-9958 | |
dc.contributor.author | Yu, Xiang | |
dc.contributor.author | Zhai, Huawei | |
dc.contributor.author | Tian, Ruijie | |
dc.contributor.author | Guan, Yao | |
dc.contributor.author | Polat, Kemal | |
dc.contributor.author | Alhudhaif, Adi | |
dc.date.accessioned | 2024-09-25T19:59:49Z | |
dc.date.available | 2024-09-25T19:59:49Z | |
dc.date.issued | 2024 | |
dc.department | BAİBÜ, Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümü | en_US |
dc.description.abstract | Partitioning dynamic trajectory data can improve the efficiency and accuracy of trajectory data processing, provide a foundation for trajectory data mining and analysis. However, with the continuous growth of trajectory data scales and the urgent demand for trajectory query efficiency and accuracy, partitioning methods have become crucial. The partitioning method of dynamic trajectory data faces significant challenges in terms of spatiotemporal trajectory locality, partition load balancing, and partition time. To address these challenges, we propose a method based on historical trajectory pre-partitioning, which can store data more effectively in distributed systems. We partition similar historical trajectory data to achieve preliminary partitioning of the data. In addition, we also construct a cost model to ensure that the workload of each partition is close to consistency. Extensive experiments have demonstrated the excellent partitioning efficiency and query efficiency achieved by our design compared to other partitioning methods. | en_US |
dc.description.sponsorship | Liaoning Provincial Natural Science Foundation of China [2022-MS-420] | en_US |
dc.description.sponsorship | Acknowledgment This work was supported by the Liaoning Provincial Natural Science Foundation of China (Grant No. 2022-MS-420) . | en_US |
dc.identifier.doi | 10.1016/j.asoc.2023.111120 | |
dc.identifier.issn | 1568-4946 | |
dc.identifier.issn | 1872-9681 | |
dc.identifier.scopus | 2-s2.0-85179476681 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.asoc.2023.111120 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12491/13939 | |
dc.identifier.volume | 151 | en_US |
dc.identifier.wos | WOS:001135071700001 | en_US |
dc.identifier.wosquality | Q1 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Polat, Kemal | |
dc.institutionauthorid | 0000-0003-1840-9958 | |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartof | Applied Soft Computing | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.snmz | YK_20240925 | en_US |
dc.subject | Pre-partitioning | en_US |
dc.subject | Dynamic trajectory partitioning | en_US |
dc.subject | Similarity function | en_US |
dc.subject | Historical Trajectory | |
dc.subject | Query Efficiency and Accuracy | |
dc.subject | Urgent Demand | |
dc.title | Dynamic trajectory partition optimization method based on historical trajectory data | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- xiang-yu.pdf
- Boyut:
- 1.5 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam metin/Full text