A novel unsupervised domain adaptation framework based on graph convolutional network and multi-level feature alignment for inter-subject ECG classification

dc.authorid0000-0003-1840-9958en_US
dc.contributor.authorHe, Ziyang
dc.contributor.authorChen, Yufei
dc.contributor.authorYuan, Shuaiying
dc.contributor.authorZhao, Jianhui
dc.contributor.authorYuan, Zhiyong
dc.contributor.authorPolat, Kemal
dc.date.accessioned2023-11-07T11:10:59Z
dc.date.available2023-11-07T11:10:59Z
dc.date.issued2023en_US
dc.departmentBAİBÜ, Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümüen_US
dc.description.abstractElectrocardiogram (ECG) is an effective non-invasive tool that can detect arrhythmias. Recently, deep learning (DL) has been widely used in ECG classification algorithms. However, differences between subjects lead to data shifts, hindering the further extension of DL algorithms. To solve this problem, we propose a novel multi-level unsupervised domain adaptation framework (MLUDAF) to diagnose arrhythmias. During feature extraction, we use the atrous spatial pyramid pooling residual (ASPP-R) module to extract spatio-temporal features of the samples. Then the graph convolutional network (GCN) module is used to extract the data structure features. During domain adaptation, we design three alignment mechanisms: domain alignment, semantic alignment, and structure alignment. The three alignment strategies are integrated into a unified deep network to guide the feature extractor to extract domain sharing and distinguishable semantic representations, which can reduce the differences between the source and target domains. Experimental results based on the MIT-BIH database show that the proposed method achieves an overall accuracy of 96.8% for arrhythmia detection. Compared to other methods, the proposed method achieves competitive performance. Cross-domain experiments between databases also demonstrate its strong generalizability. Therefore, the proposed method is promising for application in medical diagnosis systems.en_US
dc.identifier.citationHe, Z., Chen, Y., Yuan, S., Zhao, J., Yuan, Z., Polat, K., ... & Hamid, A. (2023). A novel unsupervised domain adaptation framework based on graph convolutional network and multi-level feature alignment for inter-subject ECG classification. Expert Systems with Applications, 221, 119711.en_US
dc.identifier.doi10.1016/j.eswa.2023.119711
dc.identifier.endpage14en_US
dc.identifier.issn0957-4174
dc.identifier.issn1873-6793
dc.identifier.scopus2-s2.0-85149180275en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage1en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.eswa.2023.119711
dc.identifier.urihttps://hdl.handle.net/20.500.12491/11812
dc.identifier.volume221en_US
dc.identifier.wosWOS:000952522700001en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.institutionauthorPolat, Kemal
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofExpert Systems with Applicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectECG Classificationen_US
dc.subjectIndividual Differencesen_US
dc.subjectMulti-Level Unsupervised Domain Adaptationen_US
dc.subjectDeep Learningen_US
dc.subjectNeural-Networken_US
dc.subjectInformationen_US
dc.titleA novel unsupervised domain adaptation framework based on graph convolutional network and multi-level feature alignment for inter-subject ECG classificationen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
ziyang-he.pdf
Boyut:
2.91 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin/Full Text
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: