Automatic determination of digital modulation types with different noises using convolutional neural network based on time-frequency information

Yükleniyor...
Küçük Resim

Tarih

2020

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In this study, a novel digital modulation classification model has been proposed for automatically recognizing six different modulation types including amplitude shift keying (ASK), frequency shift keying (FSK), phase-shift keying (PSK), quadrate amplitude shift keying (QASK), quadrate frequency shift keying (QFSK), and quadrate phase-shift keying (QPSK). The determination of modulation type is significant in military communication, satellite communication systems, and submarine communication. To classify the modulation types, we have proposed a two-stage hybrid method combining short-time Fourier transform (STFT) and convolutional neural network (CNN). In the first stage, as the data source, the time-frequency information from these modulation signals have been extracted with STFT. This information has been obtained as 2D images to feed the input of the CNN deep learning method. In the second stage, the obtained 2D time-frequency information has been given to the input of the CNN algorithm to classify the modulation types. In this work, noises at various SNR values from 0 dB to 25 dB were created and added to the modulated signals. Even in the presence of noise, the proposed hybrid deep learning model achieved excellent results in the noised-modulation signals. (C) 2019 Elsevier B.V. All rights reserved.

Açıklama

Anahtar Kelimeler

Modulation Type Classification, Digital Modulation, Deep Learning, Convolutional Neural Network (CNN), Short-time Fourier Transform (STFT)

Kaynak

Applied Soft Computing

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

86

Sayı

Künye