A new feature constituting approach to detection of vocal fold pathology
Yükleniyor...
Dosyalar
Tarih
2014
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Taylor & Francis Ltd
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
In the last two decades, non-invasive methods through acoustic analysis of voice signal have been proved to be excellent and reliable tool to diagnose vocal fold pathologies. This paper proposes a new feature vector based on the wavelet packet transform and singular value decomposition for the detection of vocal fold pathology. k-means clustering based feature weighting is proposed to increase the distinguishing performance of the proposed features. In this work, two databases Massachusetts Eye and Ear Infirmary (MEEI) voice disorders database and MAPACI speech pathology database are used. Four different supervised classifiers such as k-nearest neighbour (k-NN), least-square support vector machine, probabilistic neural network and general regression neural network are employed for testing the proposed features. The experimental results uncover that the proposed features give very promising classification accuracy of 100% for both MEEI database and MAPACI speech pathology database.
Açıklama
Anahtar Kelimeler
Acoustic Analysis, Vocal Fold Pathology, Feature Extraction, Feature Weighting and Classification
Kaynak
International Journal Of Systems Science
WoS Q Değeri
Q1
Scopus Q Değeri
Q1
Cilt
45
Sayı
8