Comparative analysis of transformer fault classification based on DGA data using machine learning algorithms
Dosyalar
Tarih
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
Özet
Dissolved gas analysis (DGA) is considered a leading technique for fault classification in power transformers. However, accurate analysis results can only be achieved if the measured gases are interpreted, appropriately. In DGA interpretation, traditional techniques, artificial intelligence techniques such as machine learning algorithms, and hybrid techniques are generally used. In this study, four well-known machine learning algorithms have been compared in terms of DGA fault classification: Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Naive Bayes (NB) and Decision Tree (DT). The lowest accuracy rate was obtained as 63.63% using the NB algorithm and raw data. In addition to raw data, data converted to logarithmic form has been also used to develop classification models. The highest accuracy rate was determined as 94.54% using the DT algorithm and logarithmic data. The obtained results have been demonstrated the efficiency and stability of the DT algorithm for transformer fault classification, especially when the data was appropriately preprocessed.