A comprehensive study on the photon energy response of RadFET dosimeters using the PENELOPE Monte Carlo code

dc.authorid0000-0002-4668-6381en_US
dc.authorid0000-0001-8152-9122en_US
dc.authorid0000-0002-6652-4662
dc.contributor.authorKahraman, Ayşegül
dc.contributor.authorKaya, Şenol
dc.contributor.authorJaksic, Aleksandar
dc.contributor.authorYilmaz, Ercan
dc.date.accessioned2021-06-23T19:42:06Z
dc.date.available2021-06-23T19:42:06Z
dc.date.issued2015
dc.departmentBAİBÜ, Fen Edebiyat Fakültesi, Fizik Bölümüen_US
dc.description.abstractRadiation-sensing Field Effect Transistors (RadFETs or MOSFET dosimeters) with SiO2 gate dielectric have found applications in space, radiotherapy clinics, and high-energy physics laboratories. More sensitive RadFETs, which require modifications in device design, including gate dielectric, are being considered for personal dosimetry applications. This paper presents results of a detailed study of the RadFET energy response simulated with PENELOPE Monte Carlo code. Alternative materials to SiO2 were investigated to develop high-efficiency new radiation sensors. Namely, in addition to SiO2, Al2O3 and HfO2 were simulated as gate material and deposited energy amounts in these layers were determined for photon irradiation with energies between 20keV and 5MeV. The simulations were performed for capped and uncapped configurations of devices irradiated by point and extended sources, the surface area of which is the same with that of the RadFETs. Energy distributions of transmitted and backscattered photons were estimated using impact detectors to provide information about particle fluxes within the geometrical structures. The absorbed energy values in the RadFETs material zones were recorded. For photons with low and medium energies, the physical processes that affect the absorbed energy values in different gate materials are discussed on the basis of modelling results. The results show that HfO2 is the most promising of the simulated gate materials.en_US
dc.identifier.doi10.1080/10420150.2015.1010167
dc.identifier.endpage376en_US
dc.identifier.issn1042-0150
dc.identifier.issn1029-4953
dc.identifier.issue5en_US
dc.identifier.scopus2-s2.0-84940713265en_US
dc.identifier.scopusqualityQ3en_US
dc.identifier.startpage367en_US
dc.identifier.urihttps://doi.org/10.1080/10420150.2015.1010167
dc.identifier.urihttps://hdl.handle.net/20.500.12491/8342
dc.identifier.volume170en_US
dc.identifier.wosWOS:000362255700001en_US
dc.identifier.wosqualityQ4en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.institutionauthorKahraman, Ayşegül
dc.institutionauthorKaya, Şenol
dc.institutionauthorYilmaz, Ercan
dc.language.isoenen_US
dc.publisherTaylor & Francis Ltden_US
dc.relation.ispartofRadiation Effects And Defects In Solidsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectRADFETen_US
dc.subjectPhotonen_US
dc.subjectEnergy Responseen_US
dc.subjectGamma Radiationen_US
dc.subjectMonte Carloen_US
dc.subjectPENELOPEen_US
dc.titleA comprehensive study on the photon energy response of RadFET dosimeters using the PENELOPE Monte Carlo codeen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
aysegul-kahraman-8342.pdf
Boyut:
1.21 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam metin/Full text