On convergence of certain nonlinear durrmeyer operators at lebesgue points

dc.authorid0000-0002-3641-9052en_US
dc.contributor.authorKarslı, Harun
dc.date.accessioned2021-06-23T19:42:03Z
dc.date.available2021-06-23T19:42:03Z
dc.date.issued2015
dc.departmentBAİBÜ, Fen Edebiyat Fakültesi, Matematik Bölümüen_US
dc.description.abstractThe aim of this paper is to study the behaviour of certain sequence of nonlinear Durrmeyer operators ND(n)f of the form (ND(n)f)(x) = integral K-1(0)n (x,t, f (t))dt, 0 <= x <= 1, n is an element of N, acting on bounded functions on an interval [0, 1], where K-n (x, t, u) satisfies some suitable assumptions. Here we estimate the rate of convergence at a point x, which is a Lebesgue point of f is an element of L-1 ([0,1]) be such that psi(o) vertical bar f vertical bar is an element of BV ([0, 1]), where psi(o) vertical bar f vertical bar denotes the composition of the functions psi and vertical bar f vertical bar. The function psi : R-0(+) -> R-0(+) is continuous and concave with psi(0) = 0, psi(u) > 0 for u > 0, which appears from the (L - psi) Lipschitz conditions.en_US
dc.identifier.endpage711en_US
dc.identifier.issn1017-060X
dc.identifier.issn1735-8515
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-84930975368en_US
dc.identifier.scopusqualityQ3en_US
dc.identifier.startpage699en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12491/8314
dc.identifier.volume41en_US
dc.identifier.wosWOS:000358506700013en_US
dc.identifier.wosqualityQ4en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.institutionauthorKarslı, Harun
dc.language.isoenen_US
dc.publisherSpringer Singapore Pte Ltden_US
dc.relation.ispartofBulletin Of The Iranian Mathematical Societyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectNonlinear Durrmeyer Operatorsen_US
dc.subjectBounded Variationen_US
dc.subjectLipschitz Conditionen_US
dc.subjectPointwise Convergenceen_US
dc.titleOn convergence of certain nonlinear durrmeyer operators at lebesgue pointsen_US
dc.typeArticleen_US

Dosyalar