Multimodal joint prediction of traffic spatial-temporal data with graph sparse attention mechanism and bidirectional temporal convolutional network
dc.authorid | 0000-0003-3062-4140 | |
dc.authorid | 0000-0002-7201-6963 | |
dc.authorid | 0000-0003-1840-9958 | |
dc.contributor.author | Zhang, Dongran | |
dc.contributor.author | Yan, Jiangnan | |
dc.contributor.author | Polat, Kemal | |
dc.contributor.author | Alhudhaif, Adi | |
dc.contributor.author | Li, Jun | |
dc.date.accessioned | 2024-09-25T20:00:08Z | |
dc.date.available | 2024-09-25T20:00:08Z | |
dc.date.issued | 2024 | |
dc.department | BAİBÜ, Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümü | en_US |
dc.description.abstract | Traffic flow prediction plays a crucial role in the management and operation of urban transportation systems. While extensive research has been conducted on predictions for individual transportation modes, there is relatively limited research on joint prediction across different transportation modes. Furthermore, existing multimodal traffic joint modeling methods often lack flexibility in spatial-temporal feature extraction. To address these issues, we propose a method called Graph Sparse Attention Mechanism with Bidirectional Temporal Convolutional Network (GSABT) for multimodal traffic spatial-temporal joint prediction. First, we use a multimodal graph multiplied by self-attention weights to capture spatial local features, and then employ the Top-U sparse attention mechanism to obtain spatial global features. Second, we utilize a bidirectional temporal convolutional network to enhance the temporal feature correlation between the output and input data, and extract inter-modal and intra-modal temporal features through the share-unique module. Finally, we have designed a multimodal joint prediction framework that can be flexibly extended to both spatial and temporal dimensions. Extensive experiments conducted on three real datasets indicate that the proposed model consistently achieves state-of-the-art predictive performance. | en_US |
dc.description.sponsorship | Science and Technology Planning Project of Guangdong Province, China [2023B1212060029] | en_US |
dc.description.sponsorship | This work was supported financially by the Science and Technology Planning Project of Guangdong Province, China, grant number 2023B1212060029. | en_US |
dc.identifier.doi | 10.1016/j.aei.2024.102533 | |
dc.identifier.issn | 1474-0346 | |
dc.identifier.issn | 1873-5320 | |
dc.identifier.scopus | 2-s2.0-85190735017 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.aei.2024.102533 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12491/14088 | |
dc.identifier.volume | 62 | en_US |
dc.identifier.wos | WOS:001271984200001 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Polat, Kemal | |
dc.institutionauthorid | 0000-0003-1840-9958 | |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Sci Ltd | en_US |
dc.relation.ispartof | Advanced Engineering Informatics | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.snmz | YK_20240925 | en_US |
dc.subject | Traffic Flow Prediction | en_US |
dc.subject | Multimodal Joint Prediction | en_US |
dc.subject | Sparse Attention Mechanism | en_US |
dc.subject | Bidirectional Temporal Convolutional | en_US |
dc.subject | Model Consistently | |
dc.subject | Top-U | |
dc.title | Multimodal joint prediction of traffic spatial-temporal data with graph sparse attention mechanism and bidirectional temporal convolutional network | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- dongran-zhang.pdf
- Boyut:
- 1023.16 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam metin/Full text