A hybrid SCA inspired BBO for feature selection problems
Yükleniyor...
Dosyalar
Tarih
2019
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Hindawi Ltd
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Recent trend of research is to hybridize two and more metaheuristics algorithms to obtain superior solution in the field of optimization problems. This paper proposes a newly developed wrapper-based feature selection method based on the hybridization of Biogeography Based Optimization (BBO) and Sine Cosine Algorithm (SCA) for handling feature selection problems. The position update mechanism of SCA algorithm is introduced into the BBO algorithm to enhance the diversity among the habitats. In BBO, the mutation operator is got rid of and instead of it, a position update mechanism of SCA algorithm is applied after the migration operator, to enhance the global search ability of Basic BBO. This mechanism tends to produce the highly fit solutions in the upcoming iterations, which results in the improved diversity of habitats. The performance of this Improved BBO (IBBO) algorithm is investigated using fourteen benchmark datasets. Experimental results of IBBO are compared with eight other search algorithms. The results show that IBBO is able to outperform the other algorithms in majority of the datasets. Furthermore, the strength of IBBO is proved through various numerical experiments like statistical analysis, convergence curves, ranking methods, and test functions. The results of the simulation have revealed that IBBO has produced very competitive and promising results, compared to the other search algorithms.
Açıklama
Anahtar Kelimeler
Hybrid SCA
Kaynak
Mathematical Problems In Engineering
WoS Q Değeri
Q3
Scopus Q Değeri
Q2
Cilt
2019