Guest editorial: new trends in data pre-processing methods for signal and image classification
dc.authorid | 0000-0003-2689-8552 | en_US |
dc.authorid | 0000-0002-8929-3473 | en_US |
dc.authorid | 0000-0003-1840-9958 | en_US |
dc.authorid | 0000-0003-1814-9682 | |
dc.contributor.author | Polat, Kemal | |
dc.contributor.author | Muthusamy, Hariharan | |
dc.contributor.author | Acharya, Rajendra | |
dc.contributor.author | Guo, Yanhui | |
dc.date.accessioned | 2021-06-23T19:45:21Z | |
dc.date.available | 2021-06-23T19:45:21Z | |
dc.date.issued | 2017 | |
dc.department | BAİBÜ, Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümü | en_US |
dc.description.abstract | A special issue of the Neural Computing and Applications (NCAA) is dedicated to ‘‘New trends in data pre-processing methods for signal and image classification.’’Data pre-processing is crucial for effective data mining. Low-quality data usually produce inaccurate and unpredictable outcomes. Today’s real-world data are greatly vulnerable to noise and getting lost due to either large data size or the sources of origin. Real-world data are often inconsistent and incomplete, and are possible to have several errors. These poor-quality data will result in poorquality mining outcomes. Data pre-processing enhances the data standard and subsequently aids to refine the value of data mining outcomes. Data pre-processing performs certain processing on raw original data to prepare it for further processing or analysis. In short, data pre-processing prepares original raw data for further processing. Data preprocessing converts the data into a form acceptable easily for further processing by the user. | en_US |
dc.identifier.doi | 10.1007/s00521-017-3202-6 | |
dc.identifier.endpage | 2841 | en_US |
dc.identifier.issn | 0941-0643 | |
dc.identifier.issn | 1433-3058 | |
dc.identifier.issue | 10 | en_US |
dc.identifier.scopus | 2-s2.0-85029661606 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.startpage | 2839 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s00521-017-3202-6 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12491/9140 | |
dc.identifier.volume | 28 | en_US |
dc.identifier.wos | WOS:000426865100001 | en_US |
dc.identifier.wosquality | Q1 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Polat, Kemal | |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | Neural Computing & Applications | en_US |
dc.relation.publicationcategory | Diğer | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Data Pre-Processing Methods | en_US |
dc.subject | Signal and Image Classification | |
dc.subject | Neural Computing | |
dc.title | Guest editorial: new trends in data pre-processing methods for signal and image classification | en_US |
dc.type | Editorial | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- kemal-polat.pdf
- Boyut:
- 287.2 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin/Full Text