Highly efficient nonradiative energy transfer from colloidal semiconductor quantum dots to wells for sensitive noncontact temperature probing

dc.authorid0000-0003-1793-112Xen_US
dc.authorid0000-0003-1616-2728en_US
dc.authorid0000-0002-4628-0197en_US
dc.authorid0000-0002-6250-6977
dc.authorid0000-0003-1977-6485
dc.contributor.authorOlutaş, Murat
dc.contributor.authorGüzeltürk, Burak
dc.contributor.authorKeleştemur, Yusuf
dc.contributor.authorGüngör, Kıvanç
dc.contributor.authorDemir, Hilmi Volkan
dc.date.accessioned2021-06-23T19:43:35Z
dc.date.available2021-06-23T19:43:35Z
dc.date.issued2016
dc.departmentBAİBÜ, Fen Edebiyat Fakültesi, Fizik Bölümüen_US
dc.description.abstractThis study develops and shows highly efficient exciton-transferring hybrid semiconductor nanocrystal films of mixed dimensionality comprising quasi 0D and 2D colloids. Through a systematic study of time-resolved and steady-state photoluminescence spectroscopy as a function of the donor-to-acceptor molar concentration ratio and temperature, a high-efficiency nonradiative energy transfer (NRET) process from CdZnS/ZnS core/shell quantum dots (QDs) directed to atomically flat CdSe nanoplatelets (NPLs) in their solid-state thin films is uncovered. The exciton funneling in this system reaches transfer efficiency levels as high as 90% at room temperature. In addition, this study finds that with decreasing temperature exciton transfer efficiency is increased to a remarkable maximum level of approximate to 94%. The enhancement in the dipole-dipole coupling strength with decreasing temperature is well accounted by increasing photoluminescence quantum yield of the donor and growing spectral overlap between the donor and the acceptor. Furthermore, NRET efficiency exhibits a highly linear monotonic response with changing temperature. This makes the proposed QD-NPL composites appealing for noncontact sensitive temperature probing based on NRET efficiencies as a new metric. These findings indicate that combining colloidal nanocrystals of different dimensionality enables efficient means of temperature probing at an unprecedented sensitivity level at nanoscale through almost complete exciton transfer.en_US
dc.identifier.doi10.1002/adfm.201505108
dc.identifier.endpage2899en_US
dc.identifier.issn1616-301X
dc.identifier.issn1616-3028
dc.identifier.issue17en_US
dc.identifier.scopus2-s2.0-84977955878en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage2891en_US
dc.identifier.urihttps://doi.org/10.1002/adfm.201505108
dc.identifier.urihttps://hdl.handle.net/20.500.12491/8808
dc.identifier.volume26en_US
dc.identifier.wosWOS:000377587800012en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.institutionauthorOlutaş, Murat
dc.language.isoenen_US
dc.publisherWiley-V C H Verlag Gmbhen_US
dc.relation.ispartofAdvanced Functional Materialsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectColloiden_US
dc.subjectHybrid Semiconductor Nanocrystal Films
dc.subjectCdZnS/ZnS
dc.subjectNRET
dc.titleHighly efficient nonradiative energy transfer from colloidal semiconductor quantum dots to wells for sensitive noncontact temperature probingen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Adv Funct Materials - 2016 - Olutas - Highly Efficient Nonradiative Energy Transfer from Colloidal Semiconductor Quantum.pdf
Boyut:
2.1 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin/Full Text