On convergence of certain nonlinear Bernstein operators

Yükleniyor...
Küçük Resim

Tarih

2016

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Univ Nis, Fac Sci Math

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In this article, we concern with the nonlinear Bernstein operators NBn f of the form (NB(n)f)(x) = Sigma(n)(k=0) P-n,P-k (x, f (k/n)), 0 <= x <= 1, n is an element of N, acting on bounded functions on an interval [0, 1]; where P-n,P-k satisfy some suitable assumptions. As a continuation of the very recent paper of the authors [22], we estimate their pointwise convergence to a function f having derivatives of bounded (Jordan) variation on the interval [0, 1]. We note that our results are strict extensions of the classical ones, namely, the results dealing with the linear Bernstein polynomials.

Açıklama

Anahtar Kelimeler

Nonlinear Bernstein Operators, Bounded Variation, (L - psi) Lipschitz Condition, Pointwise Convergence

Kaynak

Filomat

WoS Q Değeri

Q2

Scopus Q Değeri

Q3

Cilt

30

Sayı

1

Künye