Detailed survey on minimum activation energy for penetration of Ni nanoparticles into Bi-2223 crystal structure and temperature-dependent Ni diffusivity

dc.authorid0000-0003-0304-1097en_US
dc.authorid0000-0002-3944-0367en_US
dc.contributor.authorZalaoğlu, Yusuf
dc.contributor.authorTerzioğlu, Cabir
dc.contributor.authorTurgay, Tahsin
dc.contributor.authorYıldırım, Gürcan
dc.date.accessioned2021-06-23T19:49:59Z
dc.date.available2021-06-23T19:49:59Z
dc.date.issued2018
dc.departmentBAİBÜ, Fen Edebiyat Fakültesi, Fizik Bölümüen_US
dc.description.abstractThe primary contributions of this study are not only to explore the role of diffusion annealing temperature interval 650 to 850 A degrees C on the formation of effective electron-phonon coupling or cooper-pair probabilities (percentage of clusters in the superconducting path), densities of active and dynamic electronic states at Fermi energy level, stabilization of superconductivity in the homogeneous regions, overlapping of Cu-3d and O-2p wave functions and bond strengths in the crystal matrix of Ni surface-layered Bi-2223 polycrystalline ceramics, but also to determine the temperature-dependent diffusion fast-rate and required minimum activation energy for the diffusion of Ni foreign impurities into the bulk Bi-2223 superconducting crystal structure for the first time. The dc electrical measurement results obtained show that the optimum diffusion annealing temperature is found to be 700 A degrees C for the penetration of optimum Ni concentration into the Bi-2223 crystal lattice so that the ceramic compound exposed to 700 A degrees C annealing temperature exhibits the highest electrical and superconducting properties. In this respect, the material with the minimum electrical resistivity parameters of Delta rho, rho (115K) , rho (res) and rho (norm) obtains the maximum superconducting characteristics of , and RRR. Accordingly, the annealing temperature of 700 A degrees C promotes the Bi-2223 ceramics for usage in the engineering, electro-optic, industrial and large scale applications. At the same time, the diffusion coefficients [D = D(o)exp(E/k(B)T)] determined at annealing temperature ranging from 650 to 850 A degrees C are observed to be much more significant at rather higher temperatures as compared to lower temperatures. The temperature-dependent Ni diffusion coefficient is determined to be D = 3.9707 x 10(- 7)exp[- 1.132 eV/k(B)T] for the Bi-2223 particulate solid material. Namely, the diffusion coefficient is calculated to be about 3.9707 x 10(- 7)cm(2) s(- 1) when the required minimum activation energy for the introduction of heavy metal Ni ions to the bulk Bi-2223 crystal structure is computed to be about 1.132 eV, being one of the most striking points deduced form this work.en_US
dc.identifier.doi10.1007/s10854-017-8259-6
dc.identifier.endpage3249en_US
dc.identifier.issn0957-4522
dc.identifier.issn1573-482X
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-85034274279en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.startpage3239en_US
dc.identifier.urihttps://doi.org/10.1007/s10854-017-8259-6
dc.identifier.urihttps://hdl.handle.net/20.500.12491/9671
dc.identifier.volume29en_US
dc.identifier.wosWOS:000423824200075en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.institutionauthorTerzioğlu, Cabir
dc.institutionauthorYıldırım, Gürcan
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofJournal Of Materials Science-Materials In Electronicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBi-2223en_US
dc.subjectCrystal Structure
dc.titleDetailed survey on minimum activation energy for penetration of Ni nanoparticles into Bi-2223 crystal structure and temperature-dependent Ni diffusivityen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
yusuf-zalaoglu.pdf
Boyut:
1.03 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin/Full Text