Experimental and numerical analysis of vibration-based hybrid energy harvesting from non-classical beam structures

Yükleniyor...
Küçük Resim

Tarih

2022

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier Science Inc

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

It is known that the displacement and stress on beams will directly affect the energy harvesting performance. For this purpose, structural changes are made on the beam elements. Behaviours of these beam structures are investigated by designing different non-classical beam geometries. This study examines vibration-based electromagnetic and piezoelectric energy harvesting from the non-classical beam structures under various conditions. Before analysing the non-classical beam structure, studies are performed for a classical beam for electromagnetic and piezoelectric energy harvesting studies. In the electromagnetic energy harvesting analysis, the effects of magnitude of magnetic field and the distance between the coil and the permanent magnet on the harvesting performance are studied by free vibration experiments. In this regard, a neodymium permanent magnet is attached to the vibrating aluminium beam endpoint. During the free vibration period, the coil and the magnet interact closely. As a result, a voltage output is obtained by inducing an electric field on the coil side. Secondly, voltage outputs of piezoelectric energy harvesting structures are experimentally evaluated for a classical beam and used for the verification of numerical simulations. Using the verified numerical simulations, new types of beam structures so-called non-classical beams are designed to obtain higher voltage outputs. Finally, by introducing the phenomenon of continuous vibration with the effect of air, the hybrid energy performance is analyzed for the proposed structure. The continuous vibration is created by the air-flow on the square galloping geometry.

Açıklama

Anahtar Kelimeler

Electromagnetic Induction, Hybrid Harvester, Galloping, Smart Structures, Frequency

Kaynak

Structures

WoS Q Değeri

Q2

Scopus Q Değeri

Q1

Cilt

37

Sayı

Künye

Bolat, F. C. (2022, March). Experimental and numerical analysis of vibration-based hybrid energy harvesting from non-classical beam structures. In Structures (Vol. 37, pp. 504-513). Elsevier.