New approaches to epileptic seizure prediction based on EEG signals using hybrid CNNs
dc.authorid | 0009-0002-4501-1662 | |
dc.authorid | 0000-0002-8061-8059 | |
dc.contributor.author | Nour, Majid | |
dc.contributor.author | Arabacı, Bahadır | |
dc.contributor.author | Öcal, Hakan | |
dc.contributor.author | Polat, Kemal | |
dc.date.accessioned | 2024-09-25T19:59:58Z | |
dc.date.available | 2024-09-25T19:59:58Z | |
dc.date.issued | 2024 | |
dc.department | BAİBÜ, Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümü | en_US |
dc.description.abstract | This study employs the University of Bonn Dataset to address the importance of frequency information in EEG data and introduces a methodology utilising the short-time Fourier transform. The proposed method transforms conventional 1D EEG signals into informative 2D spectrograms, offering an approach for advancing the detection of neurological diseases. Integrating advanced CNN architectures with the conversion of EEG signals into 2D spectrograms forms the foundation of our proposed methodology. The 1D CNN model utilised in this study demonstrates exceptional performance metrics, achieving a specificity of 0.996, an overall test accuracy of 0.991, a sensitivity of 0.987, and an F1 score of 0.989. Shifting to the 2D approach discloses a slight reduction in accuracy to 0.987, sensitivity of 0.976, specificity of 0.988, and an F1 score of 0.97. This analysis provides nuanced insights into the performance of 1D and 2D CNNs, clarifying respective strengths in the context of neurological disease detection. | en_US |
dc.description.sponsorship | Institutional Fund Projects [IFPIP: 1038-135-1443]; Ministry of Education; King Abdulaziz University, DSR, Jeddah, Saudi Arabia | en_US |
dc.description.sponsorship | This research work was funded by Institutional Fund Projects under Grant No. (IFPIP: 1038-135-1443). The authors gratefully acknowledge technical and financial support provided by the Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia. | en_US |
dc.identifier.doi | 10.1504/IJIEI.2024.137706 | |
dc.identifier.issn | 1758-8715 | |
dc.identifier.issn | 1758-8723 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-85189666246 | en_US |
dc.identifier.scopusquality | N/A | en_US |
dc.identifier.uri | https://doi.org/10.1504/IJIEI.2024.137706 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12491/14006 | |
dc.identifier.volume | 12 | en_US |
dc.identifier.wos | WOS:001196022700001 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Polat, Kemal | |
dc.institutionauthorid | 0000-0003-1840-9958 | |
dc.language.iso | en | en_US |
dc.publisher | Inderscience Enterprises Ltd | en_US |
dc.relation.ispartof | International Journal of Intelligent Engineering Informatics | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.snmz | YK_20240925 | en_US |
dc.subject | Seizure Prediction | en_US |
dc.subject | Epilepsy | en_US |
dc.subject | EEG Signals | en_US |
dc.subject | 1D Convolutional Neural Network | en_US |
dc.subject | Deep Learning | en_US |
dc.subject | Classification | en_US |
dc.title | New approaches to epileptic seizure prediction based on EEG signals using hybrid CNNs | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- majid-nour (2).pdf
- Boyut:
- 954.64 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam metin/Full text