Hull-less barley flour supplemented corn extrudates produced by conventional extrusion and CO2 injection process

Yükleniyor...
Küçük Resim

Tarih

2014

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier Sci Ltd

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

The effects of feed moisture content (20, 25%), exit-die temperature (80, 130 degrees C), and extrusion-cooking method (with/without CO2 injection) on beta-glucan (BG) levels and physicochemical properties of hull-less barley flour (HBF) supplemented (15, 30, 45%) corn extrudates were investigated. The highest HBF supplementation level (45%) resulted in higher BG levels (2.87-3.28%) in all extrusion conditions. In general, increasing feed moisture content from 20 to 25% and exit-die temperature from 80 to 130 degrees C resulted in small increases in enzyme resistant starch type-3 (RS3) levels. However, the investigated extrusion conditions did not form substantial amount of RS3 and the highest RS3 content was 540 mg/100 g. Lower feed moisture content and higher exit-die temperature resulted in higher water solubility (WS) and lower water-binding capacity (WBC) values. Cold-paste viscosity (CV) was observed in all extrudates. High WS and WBC values of extrudates and the existence of CV values in RVA curves indicated complete starch gelatinization. Industrial relevance: CO2 injection has been proved as a reliable alternative method to the conventional extrusion process used in the breakfast cereals and snack food industry. The overall quality of the product processed by CO2 injection was comparable to that of the current process. The extrudates produced by CO2 injection method had more uniform expansion and smoother surface. CO2 injection did not have a reducing effect on beta-glucan levels; however, it is expected to result in a better retention of heat labile micronutrients and hence more healthy food products. (C) 2014 Elsevier Ltd. All rights reserved.

Açıklama

Anahtar Kelimeler

Corn Flour, Hull-less Barley, Beta-Glucan, Resistant Starch, Pasting Properties, Extrusion with CO2 Injection

Kaynak

Innovative Food Science & Emerging Technologies

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

26

Sayı

Künye