Modules which satisfy the radical formula
dc.authorid | 0000-0003-4441-0813 | |
dc.contributor.author | Pusat-Yılmaz, Dilek | |
dc.contributor.author | Smith, Patrick F. | |
dc.date.accessioned | 2021-06-23T19:17:27Z | |
dc.date.available | 2021-06-23T19:17:27Z | |
dc.date.issued | 2002 | |
dc.department | BAİBÜ, Fen Edebiyat Fakültesi, Matematik Bölümü | en_US |
dc.description.abstract | Let R be a commutative ring. Then an R-module M satisfies the radical formula when M = M-1 circle plus M-2 is a direct sum of a submodule M-1 which satisfies the radical formula and a semi-artinian submodule M-2. | en_US |
dc.identifier.doi | 10.1023/A:1015624503160 | |
dc.identifier.endpage | 167 | en_US |
dc.identifier.issn | 0236-5294 | |
dc.identifier.issue | 1-2 | en_US |
dc.identifier.scopus | 2-s2.0-0035982760 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.startpage | 155 | en_US |
dc.identifier.uri | https://doi.org/10.1023/A:1015624503160 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12491/5417 | |
dc.identifier.volume | 95 | en_US |
dc.identifier.wos | WOS:000175849100012 | en_US |
dc.identifier.wosquality | Q4 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Pusat-Yılmaz, Dilek | |
dc.language.iso | en | en_US |
dc.publisher | Akademiai Kiado | en_US |
dc.relation.ispartof | Acta Mathematica Hungarica | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Prime Submodule | en_US |
dc.subject | Commutative Domain | en_US |
dc.subject | Divisible Module | en_US |
dc.subject | Radical of A Submodule | en_US |
dc.subject | Semi-artinian | en_US |
dc.title | Modules which satisfy the radical formula | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Küçük Resim Yok
- İsim:
- dilek-pusat-yilmaz.pdf
- Boyut:
- 244.01 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam metin/ Full text