Liquefaction prediction with robust machine learning algorithms (SVM, RF, and XGBoost) supported by genetic algorithm-based feature selection and parameter optimization from the perspective of data processing

dc.authorid0000-0003-2520-4395en_US
dc.authorid0000-0002-9830-8585en_US
dc.contributor.authorDemir, Selçuk
dc.contributor.authorŞahin, Emrehan Kutluğ
dc.date.accessioned2023-11-28T10:55:20Z
dc.date.available2023-11-28T10:55:20Z
dc.date.issued2022en_US
dc.departmentBAİBÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümüen_US
dc.description.abstractLiquefaction prediction is an important issue in the seismic design of engineering structures, and research on this topic has been continuing in current literature using different methods, including experimental, numerical, or soft computing. In this paper, three robust machine learning (ML) algorithms are applied to predict soil liquefaction using a set of 411 shear wave velocity case records. The Genetic Algorithm (GA) based feature selection (FS) and parameter optimization of Random Forest (RF), Support Vector Machines (SVM), and eXtreme Gradient Boosting (XGBoost) algorithms are utilized to improve the accuracy of the liquefaction prediction models. Simple Random Sampling (SRS) and Stratified Random Sampling (StrRS) are used for data sampling, and also SMOTE algorithm are applied to prepare the balanced training sets. The results of robust ML algorithms are assessed based on well-known five performance matrices, namely Accuracy (Acc), Kappa, Precision, Recall, and F-Measure. Evaluation of the results is made separately for each ML algorithm considering sampling data generated from SRS, StrRS, and SMOTE. As a result, the XGBoost model is more accurate (Acc = 96%) than RF (Acc = 93%) and SVM (Acc = 91%) in the case of the SMOTE algorithm. This study reveals the superiority of the XGBoost algorithm in the liquefaction prediction and shows how the accuracy measures tend to improve when the predictive models are trained using balanced samples with StrRS and SMOTE sampling strategies.en_US
dc.identifier.citationDemir, S., & Şahin, E. K. (2022). Liquefaction prediction with robust machine learning algorithms (SVM, RF, and XGBoost) supported by genetic algorithm-based feature selection and parameter optimization from the perspective of data processing. Environmental Earth Sciences, 81(18), 459.en_US
dc.identifier.doi10.1007/s12665-022-10578-4
dc.identifier.endpage17en_US
dc.identifier.issn1866-6280
dc.identifier.issn1866-6299
dc.identifier.issue18en_US
dc.identifier.scopus2-s2.0-85138466566en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.startpage1en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s12665-022-10578-4
dc.identifier.urihttps://hdl.handle.net/20.500.12491/11888
dc.identifier.volume81en_US
dc.identifier.wosWOS:000855786000002en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.institutionauthorDemir, Selçuk
dc.institutionauthorŞahin, Emrehan Kutluğ
dc.language.isoenen_US
dc.publisherLiquefaction prediction with robust machine learning algorithms (SVM, RF, and XGBoost) supported by genetic algorithm-based feature selection and parameter optimization from the perspective of data processingen_US
dc.relation.ispartofEnvironmental Earth Sciencesen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectLiquefaction Predictionen_US
dc.subjectSMOTEen_US
dc.subjectGenetic Algorithmen_US
dc.subjectNeural-Networken_US
dc.subjectCoefficienten_US
dc.subjectEarthquakeen_US
dc.titleLiquefaction prediction with robust machine learning algorithms (SVM, RF, and XGBoost) supported by genetic algorithm-based feature selection and parameter optimization from the perspective of data processingen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
selcuk-demir.pdf
Boyut:
4.02 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin/Full Text
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: