Design and AC loss analyze of a 10 MW-Rated HTS wind turbine generator

Yükleniyor...
Küçük Resim

Tarih

2022

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

We present key design parameters of an innovative 10 MW low-speed direct-drive superconducting generator by high-temperature superconductor coated conductors for the rotor windings. In the simulations, the generator has an iron rotor with the superconducting coils operating at 20 K while the rotor core and the cooper stator are at room temperature. The calculations have been performed by Finite Element Software Comsol Multiphysics. Electromagnetic design parameters, magnetic flux distributions, phase current, voltage, and loss distributions of the superconducting generator are introduced. In addition, the AC losses that arise during the current increase in the superconducting rotor were calculated separately using both the H- and AV-formulation forms of Maxwell's equations employing the non-linear current-voltage relation of the superconductor. The current distribution and magnetic field distribution of the superconductor coils, volumetric loss density distribution, and comparison of the losses of each coil layer have been analyzed and discussed in detail.

Açıklama

Fedai Inanir acknowledges the financial support of the Scientific and Technological Research Council of Turkey (TUBITAK) under contract number 114F424.

Anahtar Kelimeler

High-Temperature Superconductor, REBCO Coated Conductor, Wind Turbine Generator, H- And A-V Formulation, Finite Element Method, HTS Rotating Machines

Kaynak

Journal of Superconductivity and Novel Magnetism

WoS Q Değeri

Q3

Scopus Q Değeri

Q3

Cilt

35

Sayı

11

Künye

Inanir, F., Erciyas, A., & Terzioğlu, R. (2022). Design and AC Loss Analyze of a 10 MW-Rated HTS Wind Turbine Generator. Journal of Superconductivity and Novel Magnetism, 35(11), 3189-3206.