On null Cartan normal isophotic and normal silhouette curves on a timelike surface in Minkowski 3-space
dc.authorid | Djordjevic, Jelena/0000-0003-3052-6778 | |
dc.authorid | Ozturk, Ufuk/0000-0002-8800-7869 | |
dc.authorid | Nesovic, Emilija/0000-0002-3124-6308 | |
dc.contributor.author | Djordjevic, Jelena | |
dc.contributor.author | Nesovic, Emilija | |
dc.contributor.author | Ozturk, Ufuk | |
dc.contributor.author | Ozturk, Esra B. Koc | |
dc.date.accessioned | 2024-09-25T19:58:35Z | |
dc.date.available | 2024-09-25T19:58:35Z | |
dc.date.issued | 2024 | |
dc.department | Abant İzzet Baysal Üniversitesi | en_US |
dc.description.abstract | We introduce generalized Darboux frames along a null Cartan curve lying on a timelike surface in Minkowski space E-1(3) and define null Cartan normal isophotic and normal silhouette curves in terms of the vector field that lies in the normal plane of the curve and belongs to its generalized Darboux frame of the first kind. We investigate null Cartan normal isophotic and normal silhouette curves with constant geodesic curvature kg and constant geodesic torsion tau(g). We obtain the parameter equations of their axes and prove that such curves are the null Cartan helices or the null Cartan cubics. In particular, we show that null Cartan normal isophotic curves with a non-zero constant curvatures k(g) and tau(g) have a remarkable property that they are general helices, relatively normal-slant helices and isophotic curves with respect to the same axis. We prove that null Cartan cubics lying on a timelike surface are normal isophotic curves with a spacelike axis and normal silhouette curves with a lightlike axis. We obtain the relation between Minkowski Pythagorean hodograph cubic curves and null Cartan normal isophotic and normal silhouette curves. Finally, we give numerical examples of null Cartan normal isophotic and normal silhouette curves obtained by integrating the system of two the first order differential equations under the initial conditions. | en_US |
dc.description.sponsorship | Serbian Ministry of Education, Science and Technological Development [451-03-65/2024-03/ 200122] | en_US |
dc.description.sponsorship | The first and the second author were partially supported by the Serbian Ministry of Education, Science and Technological Development (Agreement No. 451-03-65/2024-03/ 200122). | en_US |
dc.identifier.doi | 10.1002/mma.10137 | |
dc.identifier.endpage | 10539 | en_US |
dc.identifier.issn | 0170-4214 | |
dc.identifier.issn | 1099-1476 | |
dc.identifier.issue | 12 | en_US |
dc.identifier.scopus | 2-s2.0-85191336869 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.startpage | 10520 | en_US |
dc.identifier.uri | https://doi.org/10.1002/mma.10137 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12491/13639 | |
dc.identifier.volume | 47 | en_US |
dc.identifier.wos | WOS:001206112600001 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Wiley | en_US |
dc.relation.ispartof | Mathematical Methods in The Applied Sciences | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.snmz | YK_20240925 | en_US |
dc.subject | generalized Darboux frame | en_US |
dc.subject | initial value problem | en_US |
dc.subject | Minkowski space | en_US |
dc.subject | normal isophotic curve | en_US |
dc.subject | normal silhouette curve | en_US |
dc.subject | null Cartan curve | en_US |
dc.subject | Runge-Kutta method | en_US |
dc.title | On null Cartan normal isophotic and normal silhouette curves on a timelike surface in Minkowski 3-space | en_US |
dc.type | Article | en_US |