A complete extension of the Bernstein-Weierstrass Theorem to the infinite interval (-?, +?) via Chlodovsky polynomials

Yükleniyor...
Küçük Resim

Tarih

2022

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In the present paper, we consider the very recently introduced Chlodovsky operators on the real line by Abel and Karsli (Mediterr J Math 17:201, 2020). We study some approximation properties of these new operators, which include the rate of convergence and a Voronovskaya type theorem.

Açıklama

Anahtar Kelimeler

Chlodovsky Polynomials, Rate of Convergence, Modulus of Continuity, Peetre K-Functional, Lipschitz Space, Voronovskaya Type Theorem

Kaynak

Advances in Operator Theory

WoS Q Değeri

N/A

Scopus Q Değeri

Q3

Cilt

7

Sayı

2

Künye

Karsli, H. (2022). A complete extension of the Bernstein–Weierstrass Theorem to the infinite interval (-∞,+∞) via Chlodovsky polynomials. Advances in Operator Theory, 7(2), 15.