A complete extension of the Bernstein-Weierstrass Theorem to the infinite interval (-?, +?) via Chlodovsky polynomials
Yükleniyor...
Dosyalar
Tarih
2022
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Springer
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
In the present paper, we consider the very recently introduced Chlodovsky operators on the real line by Abel and Karsli (Mediterr J Math 17:201, 2020). We study some approximation properties of these new operators, which include the rate of convergence and a Voronovskaya type theorem.
Açıklama
Anahtar Kelimeler
Chlodovsky Polynomials, Rate of Convergence, Modulus of Continuity, Peetre K-Functional, Lipschitz Space, Voronovskaya Type Theorem
Kaynak
Advances in Operator Theory
WoS Q Değeri
N/A
Scopus Q Değeri
Q3
Cilt
7
Sayı
2
Künye
Karsli, H. (2022). A complete extension of the Bernstein–Weierstrass Theorem to the infinite interval (-∞,+∞) via Chlodovsky polynomials. Advances in Operator Theory, 7(2), 15.