Approximation properties of a certain nonlinear Durrmeyer operators

dc.authorid0000-0002-3641-9052en_US
dc.contributor.authorKarslı, Harun
dc.date.accessioned2021-06-23T19:49:14Z
dc.date.available2021-06-23T19:49:14Z
dc.date.issued2017
dc.departmentBAİBÜ, Fen Edebiyat Fakültesi, Matematik Bölümüen_US
dc.description.abstractThe present paper is concerned with a certain sequence of the nonlinear Durrmeyer operators NDn, very recently introduced by the author [22] and [23], of the form (NDn f)(x) = integral(1)(0) K-n(x,t, f (t))dt, 0 <= x <= 1, n is an element of IN, acting on Lebesgue measurable functions defined on [0, 1]; where K-n (x, t, u) = F-n (x, t) H-n(u) satisfy some suitable assumptions. As a continuation of the very recent papers of the author [22] and [23], we estimate their pointwise convergence to functions f and psi o broken vertical bar f broken vertical bar having derivatives are of bounded (Jordan) variation on the interval [0, 1] .Here psi o broken vertical bar f broken vertical bar denotes the composition of the functions psi and broken vertical bar f broken vertical bar The function : R-0(+)-> R-0(+) is continuous and concave with psi(0) = 0, psi(u) > 0 for u > 0 : This study can be considered as an extension of the related results dealing with the classical Durrmeyer operators.en_US
dc.identifier.doi10.2298/FIL1705367K
dc.identifier.endpage1380en_US
dc.identifier.issn0354-5180
dc.identifier.issue5en_US
dc.identifier.scopus2-s2.0-85014735220en_US
dc.identifier.scopusqualityQ3en_US
dc.identifier.startpage1367en_US
dc.identifier.urihttps://doi.org/10.2298/FIL1705367K
dc.identifier.urihttps://hdl.handle.net/20.500.12491/9424
dc.identifier.volume31en_US
dc.identifier.wosWOS:000397996300022en_US
dc.identifier.wosqualityQ3en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.institutionauthorKarslı, Harun
dc.language.isoenen_US
dc.publisherUniv Nis, Fac Sci Mathen_US
dc.relation.ispartofFilomaten_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectNonlinear Durrmeyer Operatorsen_US
dc.subjectBounded Variationen_US
dc.subject(L-psi) Lipschitz Conditionen_US
dc.subjectPointwise Convergenceen_US
dc.titleApproximation properties of a certain nonlinear Durrmeyer operatorsen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
harun-karsli.pdf
Boyut:
259.63 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin/Full Text