Wi-Fi signal-based human action acknowledgement using channel state information with CNN-LSTM: A device less approach

dc.authorid0000-0003-1840-9958en_US
dc.contributor.authorKumar, V. Dhilip
dc.contributor.authorRajesh, P.
dc.contributor.authorPolat, Kemal
dc.contributor.authorAlenezi, Fayadh
dc.contributor.authorAlthubiti, Sara A.
dc.date.accessioned2023-09-06T13:30:32Z
dc.date.available2023-09-06T13:30:32Z
dc.date.issued2022en_US
dc.departmentBAİBÜ, Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümüen_US
dc.description.abstractHuman action acknowledgment is an abundant and significant area for machine learning-based researchers due to the level of accuracy in identifying human actions. Due to the rapid growth of technologies in the machine and deep learning techniques, wireless sensors, handy Internet of Things (IoT) devices, and Wireless Fidelity (Wi-Fi), the activity recognition process is made effective with higher accuracy. By using those booming technologies and preserving the privacy of the test person we propose a novel human action recognition model that uses the channel state information (CSI) from Wi-Fi and the most prominent machine learning model, CNN with LSTM. Initially, CSI is introduced, the changes in CSI signals are assessed, and the obtained data samples are made as input to the CNN-LSTM model. To make the recognition more accurate, we also incorporated Kalman filters for noise removal and smoothed the data sample. Furthermore, we have used an image segmentation procedure to identify the initial and end times of all the activities considered and to fragment the image obtained, which is further fed as input to the CNN-LSTM model. Getting a dataset for the experiment is a herculean task. Hence a self-collected dataset is used to assess, or model proposed. Finally, the results obtained are verified and validated for their correctness with appropriate machine learning metrics and parameters like accuracy, F1 score, etc. Our proposed model affords the accuracy of 98.96% for all the considered activities. The model can adapt itself even for a minimum sampling rate and subcarriers found in the test bed.en_US
dc.identifier.citationKumar, V. D., Rajesh, P., Polat, K., Alenezi, F., Althubiti, S. A., & Alhudhaif, A. (2022). Wi-Fi signal-based human action acknowledgement using channel state information with CNN-LSTM: a device less approach. Neural Computing and Applications, 34(24), 21763-21775.en_US
dc.identifier.doi10.1007/s00521-022-07630-6
dc.identifier.endpage21775en_US
dc.identifier.issn0941-0643
dc.identifier.issn1433-3058
dc.identifier.issue24en_US
dc.identifier.scopus2-s2.0-85135263550en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage21763en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s00521-022-07630-6
dc.identifier.urihttps://hdl.handle.net/20.500.12491/11669
dc.identifier.volume34en_US
dc.identifier.wosWOS:000833451900005en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.institutionauthorPolat, Kemal
dc.language.isoenen_US
dc.publisherSpringer London Ltden_US
dc.relation.ispartofNeural Computing and Applicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectActivity Recognitionen_US
dc.subjectCNNen_US
dc.subjectKalman Filtersen_US
dc.subjectFall Detectionen_US
dc.subjectRecognitionen_US
dc.subjectEEGen_US
dc.titleWi-Fi signal-based human action acknowledgement using channel state information with CNN-LSTM: A device less approachen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
Ä°sim:
v-dhilip-kumar.pdf
Boyut:
1.47 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin/Full Text
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
Ä°sim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: