Application of state-of-the-art machine learning algorithms for slope stability prediction by handling outliers of the dataset

dc.authorid0000-0003-2520-4395en_US
dc.authorid0000-0002-9830-8585en_US
dc.contributor.authorDemir, Selçuk
dc.contributor.authorŞahin, Emrehan Kutluğ
dc.date.accessioned2024-05-27T11:12:54Z
dc.date.available2024-05-27T11:12:54Z
dc.date.issued2023en_US
dc.departmentBAİBÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümüen_US
dc.description.abstractThis paper addresses the issue of the prediction of slope stability with machine learning (ML) applications. Five well-known and popular ML algorithms, namely neural network (NNet), decision tree (DT), support vector machine (SVM), k-nearest neighbor (kNN), and random forest (RF), are used to demonstrate the effectiveness of the ML algorithms for predicting binary classification of slope stability based on a case history dataset containing outliers. This study also evaluates the winsorization method used to treat outliers in the dataset by outlining the effect of outliers on the prediction performances of models. To this end, the performance of all the generated ML models is assessed and compared both for unwinsorized (e.g., raw) and winsorized datasets based on performance metrics (i.e., Recall, Precision, Accuracy, and F1-Score) obtained from the confusion matrix. The experimental outputs showed that the application of winsorization enhanced the prediction performance of the models, and thus, all ML models built with winsorized datasets outperformed the unwinsorized ones. In this paper, the RF model achieves the best prediction performance, especially in the case of the winsorized dataset used. Moreover, it is found that SVM is the most sensitive algorithm to outliers as against the other ML algorithms, while the kNN algorithm is the least among the applied algorithms. Results showed that the increment percentage of accuracy nearly reaches 20% for the SVM model and the following 18% for DT, 11% for NNet, 10% for RF, and 4% for kNN, respectively. Furthermore, the results of the study reveal not only the performance of ML algorithms for the slope stability problem but also show how the handling of outliers of a dataset affects the models' prediction performance.en_US
dc.identifier.citationDemir, S., & Sahin, E. K. (2023). Application of state-of-the-art machine learning algorithms for slope stability prediction by handling outliers of the dataset. Earth Science Informatics, 16(3), 2497-2509.en_US
dc.identifier.doi10.1007/s12145-023-01059-8
dc.identifier.endpage2509en_US
dc.identifier.issn1865-0473
dc.identifier.issn1865-0481
dc.identifier.scopus2-s2.0-85165566878en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.startpage2497en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s12145-023-01059-8
dc.identifier.urihttps://hdl.handle.net/20.500.12491/12170
dc.identifier.volume16en_US
dc.identifier.wosWOS:001034535800002en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.institutionauthorDemir, Selçuk
dc.institutionauthorŞahin, Emrehan Kutluğ
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofEarth Science Informaticsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMachine Learningen_US
dc.subjectOutlieren_US
dc.subjectRandom Foresten_US
dc.subjectLimit Equilibriumen_US
dc.subjectNeural-Networken_US
dc.subjectFailureen_US
dc.titleApplication of state-of-the-art machine learning algorithms for slope stability prediction by handling outliers of the dataseten_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
selcuk-demir.pdf
Boyut:
4.73 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin/Full Text
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: