On approximation to discrete q-derivatives of functions via q-Bernstein-Schurer operators
dc.authorid | 0000-0002-3641-9052 | en_US |
dc.contributor.author | Karslı, Harun | |
dc.date.accessioned | 2023-05-12T10:57:15Z | |
dc.date.available | 2023-05-12T10:57:15Z | |
dc.date.issued | 2021 | en_US |
dc.department | BAİBÜ, Fen Edebiyat Fakültesi, Matematik Bölümü | en_US |
dc.description.abstract | In the present paper, we shall investigate the pointwise approximation properties of the qanalogue of the Bernstein-Schurer operators and estimate the rate of pointwise convergence of these operators to the functions f whose qderivatives are bounded variation on the interval [0, 1 + p]: We give an estimate for the rate of convergence of the operator (B(n,p,q)f) at those points x at which the one sided qderivatives D-q(+) f (x) and D-q(-) f (x) exist. We shall also prove that the operators (B(n,p,q)f) (x) converge to the limit f (x). As a continuation of the very recent and initial study of the author deals with the pointwise approximation of the qBernstein Durrmeyer operators [12] at those points x at which the one sided qderivatives D-q(+) f (x) and D-q(-) f(x) exist, this study provides (or presents) a forward work on the approximation of q -analogue of the Schurer type operators in the space of DqBV | en_US |
dc.identifier.citation | Karsli, H. (2021). On approximation to discrete q-derivatives of functions via q-Bernstein-Schurer operators. Mathematical Foundations of Computing, 4(1), 15-30. | en_US |
dc.identifier.doi | 10.3934/mfc.2020023 | |
dc.identifier.endpage | 30 | en_US |
dc.identifier.issn | 2577-8838 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-85110469320 | en_US |
dc.identifier.scopusquality | Q3 | en_US |
dc.identifier.startpage | 15 | en_US |
dc.identifier.uri | http://dx.doi.org/10.3934/mfc.2020023 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12491/10879 | |
dc.identifier.volume | 4 | en_US |
dc.identifier.wos | WOS:000623677400002 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Karslı, Harun | |
dc.language.iso | en | en_US |
dc.publisher | American Institute of Mathematical Sciences | en_US |
dc.relation.ispartof | Mathematical Foundations of Computing | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Q-Bernstein-Schurer Operators | en_US |
dc.subject | Pointwise Approximation | en_US |
dc.subject | Right and Left Q-Derivatives | en_US |
dc.subject | Convergence | en_US |
dc.subject | Polynomials | en_US |
dc.title | On approximation to discrete q-derivatives of functions via q-Bernstein-Schurer operators | en_US |
dc.type | Article | en_US |