On approximation to discrete q-derivatives of functions via q-Bernstein-Schurer operators

dc.authorid0000-0002-3641-9052en_US
dc.contributor.authorKarslı, Harun
dc.date.accessioned2023-05-12T10:57:15Z
dc.date.available2023-05-12T10:57:15Z
dc.date.issued2021en_US
dc.departmentBAİBÜ, Fen Edebiyat Fakültesi, Matematik Bölümüen_US
dc.description.abstractIn the present paper, we shall investigate the pointwise approximation properties of the qanalogue of the Bernstein-Schurer operators and estimate the rate of pointwise convergence of these operators to the functions f whose qderivatives are bounded variation on the interval [0, 1 + p]: We give an estimate for the rate of convergence of the operator (B(n,p,q)f) at those points x at which the one sided qderivatives D-q(+) f (x) and D-q(-) f (x) exist. We shall also prove that the operators (B(n,p,q)f) (x) converge to the limit f (x). As a continuation of the very recent and initial study of the author deals with the pointwise approximation of the qBernstein Durrmeyer operators [12] at those points x at which the one sided qderivatives D-q(+) f (x) and D-q(-) f(x) exist, this study provides (or presents) a forward work on the approximation of q -analogue of the Schurer type operators in the space of DqBVen_US
dc.identifier.citationKarsli, H. (2021). On approximation to discrete q-derivatives of functions via q-Bernstein-Schurer operators. Mathematical Foundations of Computing, 4(1), 15-30.en_US
dc.identifier.doi10.3934/mfc.2020023
dc.identifier.endpage30en_US
dc.identifier.issn2577-8838
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85110469320en_US
dc.identifier.scopusqualityQ3en_US
dc.identifier.startpage15en_US
dc.identifier.urihttp://dx.doi.org/10.3934/mfc.2020023
dc.identifier.urihttps://hdl.handle.net/20.500.12491/10879
dc.identifier.volume4en_US
dc.identifier.wosWOS:000623677400002en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.institutionauthorKarslı, Harun
dc.language.isoenen_US
dc.publisherAmerican Institute of Mathematical Sciencesen_US
dc.relation.ispartofMathematical Foundations of Computingen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectQ-Bernstein-Schurer Operatorsen_US
dc.subjectPointwise Approximationen_US
dc.subjectRight and Left Q-Derivativesen_US
dc.subjectConvergenceen_US
dc.subjectPolynomialsen_US
dc.titleOn approximation to discrete q-derivatives of functions via q-Bernstein-Schurer operatorsen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
harun-karsli.pdf
Boyut:
417.25 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin/Full Text
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: