Arşiv logosu
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Kalendar, Ruslan" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Genetic diversity and pathogenicity of Rhizoctonia spp. isolates associated with red cabbage in Samsun (Turkey)
    (MDPI, 2021) Erper, İsmail; Özer, Göksel; Kalendar, Ruslan; Avcı, Şirin; Yıldırım, Elif; Alkan, Mehtap; Türkkan, Muharrem
    Abstract: A total of 132 Rhizoctonia isolates were recovered from red cabbage plants with root rot and wirestem symptoms in the province of Samsun (Turkey) between 2018 and 2019. Based on the se quence analysis of the internal transcribed spacer (ITS) region located between the 18S and 28S ribosomal RNA genes and including nuclear staining, these 124 isolates were assigned to multinucle ate Rhizoctonia solani, and eight were binucleate Rhizoctonia. The most prevalent anastomosis group (AG) was AG 4 (84%), which was subdivided into AG 4 HG-I (81%) and AG 4 HG-III (3%), followed by AG 5 (10%) and AG-A (6%), respectively. The unweighted pair group method phylogenetic tree resulting from the data of 68 isolates with the inter-PBS amplification DNA profiling method based on interspersed retrotransposon element sequences confirmed the differentiation of AGs with a higher resolution. In the greenhouse experiment with representative isolates (n = 24) from AGs on red cab bage (cv. Rondale), the disease severity index was between 3.33 and 4.0 for multinucleate AG isolates and ranged from 2.5 to 3.17 for AG-A isolates. In the pathogenicity assay of six red cabbage cultivars, one isolate for each AG was tested using a similar method, and all cultivars were susceptible to AG 4 HG-I and AG 4 HG-III isolates. Redriver and Remale were moderately susceptible, while Rescue, Travero, Integro, and Rondale were susceptible to the AG 5 isolate. The results indicate that the most prevalent and aggressive AGs of Rhizoctonia are devastating pathogens to red cabbage, which means that rotation with nonhost-crops for these AGs may be the most effective control strategy. This is the first comprehensive study of Rhizoctonia isolates in red cabbage using a molecular approach to assess genetic diversity using iPBS-amplified DNA profiling.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Molecular characterization of native entomopathogenic fungi from ambrosia beetles in hazelnut orchards of Turkey and evaluation of their in vitro efficacy
    (MDPI, 2022) Kushiyev, Rahman; Tunçer, Celal; Özdemir, İsmail Oğuz; Erper, İsmail; Kalendar, Ruslan; Alkan, Mehtap; Özer, Göksel
    Turkey is the world’s largest producer and exporter of hazelnut. Ambrosia beetle species are the most common species of pests for hazelnut in the orchards of Turkey. These beetles cause enormous economic losses by draining hazelnut branches and trees. The techniques for managing ambrosia beetles are limited. The more effective and eco-friendly alternative control methods, including the use of entomopathogenic fungi (EPF), should be included in integrated pest management programs to suppress ambrosia beetle populations. The objectives of the current study were (i) to isolate EPF from individual ambrosia beetles that were obtained from Turkey’s main hazelnut production areas; (ii) to characterize EPF isolates using DNA sequencing and iPBS profiling; and (iii) to assess the effectiveness of the isolates against three ambrosia beetle species under laboratory conditions. A total of 47 EPF isolates were obtained from beetle cadavers and classified into eight EPF species. For the first time, the primer binding site (PBS) marker system was used to successfully discriminate among the EPF species. Some isolates caused 100% mortality of the beetle species within 7 to 9 days, depending on the beetle species, demonstrating their effectiveness in managing the pests. The major EPF species in this study provided an important basis for developing bioproducts and a possible alternative approach in controlling these ambrosia beetles. Abstract: Ambrosia beetles, Anisandrus dispar Fabricius, Xylosandrus germanus Blandford, and Xyleborinus saxesenii Ratzeburg (Coleoptera: Curculionidae: Scolytinae) are among the most significant hazelnut pests in Turkey. The control of these pests is difficult and expensive due to their biology. The present study aimed to isolate entomopathogenic fungi (EPF) from A. dispar, X. germanus, and X. saxesenii individuals that were obtained from the main hazelnut production areas of Turkey, characterize the EPF isolates using internal transcribed spacer (ITS)-DNA sequencing and iPBS profiling, and determine the efficacy of the isolates against A. dispar, X. germanus, and X. saxesenii under laboratory conditions. Phylogenetic analyses based on ITS revealed that the 47 native isolates were Beauveria bassiana (11), B. pseudobassiana (8), Cordyceps fumosorosea (6), Cordyceps farinosa (1), Akanthomyces lecanii (13), Purpureocillium lilacinum (3), Clonostachys rosea (2) and Metarhizium anisopliae (3). For the first time, the primer binding site (PBS) marker system, based on retrotransposons, was used to discriminate successfully among the EPF species. Some isolates of B. bassiana, B. pseudobassiana, C. fumosorosea, A. lecanii, and M. anisopliae caused 100% mortality of the beetle species within 7 to 9 days. The findings of this study indicated that some isolated entomopathogenic fungi provide an essential basis for the development of bioproducts, as well as a promising alternative method for controlling these ambrosia beetles.

| Bolu Abant İzzet Baysal Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Bolu Abant İzzet Baysal Üniversitesi Kütüphanesi, Bolu, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim