Veri çoğaltma ve derin öğrenme teknikleriyle medikal görüntülerden otomatik hastalık tespiti

Küçük Resim Yok

Tarih

2023

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Bolu Abant İzzet Baysal Üniversitesi

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

2019 yılında, Covid-19 hastalığının tüm dünyaya yayılması, yaşamı negatif olarak etkiledi. Covid-19 hastalığı, zatürre hastalığının bir çeşididir. Zatürre hastalarının, derin öğrenme yöntemiyle erken teşhisi, bu tez çalışmanın ana konusudur. Erken teşhis için bireylerin göğüs röntgen görüntüleri (X-Ray görüntüleri), bu tez çalışmada veri kümesi olarak kullanılmıştır. Kaggle veri sitesi üzerindeki, CoronaHack-Chest-Xray, bu tezde veri kümesi olarak kullanılmıştır. Veri kümesindeki görüntülerin; zatürre ve normal olarak, iki farklı sınıfta etiketli olduğu görülmüştür. VGG-16, VGG-19, MobileNet, InceptionV3, Xception; derin öğrenme modelleri bu çalışmada, ayrı ayrı kullanılmıştır. Her bir model 4 farklı metot ile çalıştırılmıştır. Metotlar; 1- Veri artırımı yok ve çapraz doğrulama yok, 2- Veri artırımı yok, çapraz doğrulama var, 3-Veri artırımı var, çapraz doğrulama yok, 4- Veri artırımı var, çapraz doğrulama var. Tüm model ve metodu eşleşme kombinasyonları çalıştırıldığında, CoronaHack-Chest-Xray veri kümesi üzerinde, MobileNet modeli, veri artırımı yok-çapraz doğrulama yok metodu ile, eğitim kümesi %80 – test kümesi %20 olarak, en iyi başarı metrik sonuçları vermiştir. En iyi sonuca sahip modelin; görüntüleri, zatürre ve normal olarak 2 sınıfa ayırmasının, başarı metrikleri özetle şunlardır: Doğruluk metriği %99, kesinlik metriği %98, hatırlama metriği %98. Diğer başarı metrik sonuçları, karmaşıklık matrisi ve diğer model-metot kombinasyonlarının çalıştırılma başarı metrikleri bu tezde elde edilmiştir. ANAHTAR KELİMELER: Derin Öğrenme, Veri Çoğaltma, Medikal Görüntüleme, Covid-19, Zatürre

In 2019, the spread of the Covid-19 disease worldwide negatively affected life. Covid-19 disease is a type of pneumonia disease. Early diagnosis of pneumonia patients with deep learning method is the main subject of this thesis study. Chest X-rays (X-Ray images) of individuals for early diagnosis were used as dataset in this thesis study. This study used coronaHack-Chest-Xray on the Kaggle data site as a dataset. The images in the dataset; It is labeled into two different classes, pneumonia and normal. VGG-16, VGG-19, MobileNet, InceptionV3, and Xception; deep learning models were used separately in this thesis. Each model was run with 4 different methods. Methods; 1- No data augmentation and cross-validation, 2- No data augmentation, cross-validation, 3-Data augmentation, no cross-validation, 4-Data augmentation, cross-validation. When all model and method matching combinations were run, the MobileNet model gave the best success metric results on the CoronaHack-ChestXray dataset, with the no data augmentation-no cross-validation method, training set 80% – test set 20%. The model with the best result, The success metrics of separating the images into 2 classes, pneumonia and normal, are summarized as follows: the accuracy metric is 99%, the precision metric is 98%, and the recall metric is 98%. Other success metric results, complexity matrix, and running success metrics of other model-method combinations were obtained in this thesis. KEYWORDS: Deep Learning, Data Augmentation, Medical Imaging, Covid-19, Pneumonia

Açıklama

Lisansüstü Eğitim Enstitüsü, Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

Anahtar Kelimeler

Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering

Kaynak

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye