Modeling and simulation of position estimation of switched reluctance motor with artificial neural networks
dc.authorid | 0000-0002-1821-0722 | |
dc.contributor.author | Üstün, Oğuz | |
dc.contributor.author | Bekiroğlu, Erdal | |
dc.date.accessioned | 2021-06-23T18:52:06Z | |
dc.date.available | 2021-06-23T18:52:06Z | |
dc.date.issued | 2009 | |
dc.department | BAİBÜ, Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümü | en_US |
dc.description.abstract | In the present study, position estimation of switched reluctance motor (SRM) has been achieved on the basis of the artificial neural networks (ANNs). The ANNs can estimate the rotor position without using an extra rotor position sensor by measuring the phase flux linkages and phase currents. Flux linkage-phase current-rotor position data set and supervised back propagation learning algorithm are used in training of the ANN based position estimator. A 4-phase SRM have been used to verify the accuracy and feasibility of the proposed position estimator. Simulation results show that the proposed position estimator gives precise and accurate position estimations for both under the low and high level reference speeds of the SRM. | en_US |
dc.identifier.endpage | 34 | en_US |
dc.identifier.issn | 2010-376X | |
dc.identifier.scopus | 2-s2.0-78651587186 | en_US |
dc.identifier.scopusquality | N/A | en_US |
dc.identifier.startpage | 30 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12491/4131 | |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-78651587186&partnerID=40&md5=e6bea610af10d13f402a756aa1e9a26c | |
dc.identifier.volume | 57 | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Üstün, Oğuz | |
dc.institutionauthor | Bekiroğlu, Erdal | |
dc.language.iso | en | en_US |
dc.relation.ispartof | World Academy of Science, Engineering and Technology | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Artificial Neural Networks | en_US |
dc.subject | Modeling And Simulation | en_US |
dc.subject | Position Observer | en_US |
dc.subject | Switched Reluctance Motor | en_US |
dc.title | Modeling and simulation of position estimation of switched reluctance motor with artificial neural networks | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Küçük Resim Yok
- İsim:
- oguz-ustun.pdf
- Boyut:
- 413.35 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam metin/ Full text